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Introduction

The general methods available for reactivity control, the insertion and withdrawal of
neutron absorbers, generally referred to as control rods, is the approach usually taken for
power reactors. A burnable poison, (a nuclide that has a large neutron absorption cross
section) or a chemical shim (a neutron-absorbing chemical, usually boric acid, which is
dissolved in the moderator or coolant) is employed for reactivity control depending on reactor
types. There are three methods to control the reactivity of a power plant. The first method (by
the insertion and withdrawal control rod) has a negative effect on the axial power distribution,
and the insertion or withdrawal control rod will change the power of reactor. The second
method is chemical shim (a neutron-absorbing chemical, usually boric acid, which is
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concentrated in the moderator or coolant), this method has a better effect on the radial and
axial power distribution, but in depending on burnup, the concentration of boric acid in the
moderator should be decrease by operator or automation system to conserve the criticality
state and any mistake will happen in this system will cause accident in the core. The third
method is burnable absorber [1-2] (a nuclide that has a large neutron absorption cross
section), and there are many nuclides using in the fuel as an absorber like Gd, Pu, Cm, Np,
Am and Th etc. All these elements change the reactivity of the power reactor.

Objective

In operating WWER-1200 reactors, which use extended campaigns up to one and a half
to two years, the number of fuels with gadolinium rod 18—-24 pieces, and the weight content of
Gdx03 is 5-8 wt.%. Due to this arrangement, the burnable absorber is permanent and
completely disappears at the end of the campaign.Inhereevaluated the concentration of
Gadolinium in the fuel with gadolinium rod (tveg) for the full-scale loadingandpoly cells
model.

Description of the program GETERA-93

The GETERA-93 program is designed for neutron-physical calculation of cells and
poly-cells of nuclear reactors, both fast and thermal, in spherical, cylindrical and planar
geometry. The program can be used to solve a wide range of problems: preparation of small-
molecule cross sections for subsequent large-scale calculations, investigation of various
characteristics of reactors in cell and poly-cellular models, solving problems related to
burnout of fuels, modeling of various reactor regimes. The neutron-physical distribution of
neutrons is calculated in the probability method of the first collisions [3-4].

The GETERA-93 program can be used to solve a wide range of tasks, both research and
applied. With its help, it is possible to study the neutron-physical characteristics of the
reactors at the cell and poly cells level. The algorithm for the multiplicity of the cell makes it
possible to simulate sufficiently large fragments of the reactor on a small number of cells. In
addition to calculations of the fragments of the reactor, the built-in algorithms allow modeling
the burnup processes in the reactor and calculating the characteristics of fuel cycles: for
example, the coarse fuel burnup in reactors with cyclic and in reactors with continuous fuel
overload.Another large area of application of this program is the preparation of libraries of
small sections so that they can later be used in full-scale models. The program allows you to
take into account the environment of the cell when preparing sections, which is important
when preparing the correct constants for small programs [5-6]. The program prepares both
macromicro-sequences and constants for dynamic software complexes.

Full-scale and Poly-cells model

Fuel assembly (FA) contains four types of rod

1. Fuel rod (tvel)

2. Fuel with gadolinium rod (tveg)

3. Central rod

4. Guide channel

Fuel rod and fuel with gadolinium rod (Figure-1) are divided into five zones. The first
zone, which is contains «He» gas. The second zone, which is contains fuel (U?*) (for the tvel)
and fuel with gadolinium (for the tveg) [7-8]. The third zone which is contains clearance
zone. Forth zone contains shell zone and the fifth zone is coolant zone.
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0.39 cm Fuel

0.lcm He

0.3965 cm He

Figure 1 — Fuel zone (tvel) or Fuel with gadolinium (tveg) zone position in 0.39 cm radius

In Figure 2, it is shown that there are 312 rods in the fuel assembly. If n- fuel with
gadolinium rod, then 312-n = fuel rods. In Russian WWER reactors, the ratio of the fuel with
gadolinium (tveg) and fuel rodsis- 1: 6, 1: 12, 1: 18 and 1: 24. So, 1: 6, N (Total) = (1+6) =7,
312 / 7=45 fuel with gadolinium rods and (312-45) = 267 fuel rods. In the same way, for the
1:12, N = 13, 312 / 13=24 fuel with gadolinium rods and (312-24) = 288 fuel rods, for the
1:18, N =19, 312 / 19=17 fuel with gadolinium rods and (312-17) = 295 fuel rods, for the
1:24, N =25,312/25= 12 tags and (312-25)=300 fuel rods. In this calculation, we can say that
the poly cells model is 1: 6, 1: 12, 1: 18 and 1: 24 and full-scale model is 45: 267, 24: 288, 17:
295 and 12: 300. [9-10]
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Figure 2 — 312 Fuel rods assembly

Calculate the multiplying coefficient characteristic for the Full-scaleand Poly cells
model

For the full-scale fuel assembly (when 45 fuel with gadolinium rods and 267 fuel rods)
and poly cells: (1fuel with gadolinium rod and 6 fuels rod), then the multiplying coefficient vs
time was calculated by the program GETERA-93 for the different (0.1%, 0.25%, 0.5%, 0.75%
and 1%) concentration of gadolinium, which is shown in the figure 3a and figure 3b
respectively. In here full-scale fuel assembly and poly cells are given the same result. [11-12]
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Figure 3a — Multiplying coefficient vs Days in full Figure 3b — Multiplying coefficient vs Days in full
scale 45 (Fuel+Gd)rods and 267 fuel rods model poly cells 1(Fuel+Gd) rod and 6 fuel rods model

Graph analysis: When the concentration of gadolinium is 0.1% in the full-scale (45 tveg
rods and 267 tvelrods) model, then the gadolinium rod (tveg) very soon (approximately 50
days) absorbed neutrons and after that only fuel U>**was burned. In the same way, when a
little much more gadolinium 0.25% then approximatelyl00 day’s gadolinium fuel rod
absorbed neutrons, after that only fuel U?>*was burned. In here it was seen that, more
concentration of gadolinium absorbed neutrons for a long time until all gadolintum was
burned, and then only fuel U?’was burned. Same result was shownin the poly cells model
(fig. 3b).

When in the fuel assembly has 24(Fuel+Gd)rods and 288 fuel rods for the full scale and
poly cells 1(Fuel+Gd) rod and 12 fuel rods, then the multiplying coefficient vs days shown in
the figure 4a and figure 4 accordingly. But in here, 24 fuel with gadolinium rods which is
less than <45 fuel with gadolinium rods. For this reason, for the concentration of (0.5%,
0.75%, 1.5% and 3%) gadolinium, 24 fuel with gadolinium rods absorbed neutrons for a long
time and then burned fuel U?%,
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Figure 4a — Multiplying coefficient vs Days in full Figure 4b — Multiplying coefficient vs Days in poly
scale 24 (Fuel+Gd) rods and 288 fuel rods model cells 1 (Fuel+Gd)rod and 12 fuel rods model

For the fuel assembly 17 (Fuel+Gd) rods and 295 fuel rods and his poly cells 1
(Fuel+Gd) rod and 18 fuel rods, fuel assembly 12 (Fuel+Gd) rods and 300 fuel rodsfor the
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full-scalemodel and his poly cells model 1 (Fuel+Gd) rod and 24 fuel rods was calculated by
the program GETERA-93. Which is shown in figure 5a, 56 and 6a, 6b accordingly.

amount and distribution inside the fuel assembly.
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Figure 5a — Multiplying coefficient vs Days in full
scalel7 (Fuel+Gd)rods and 295 fuel rods model

Figure 5h — Multiplying coefficient vs Days in poly
cells 1(Fuel+Gd)rod and 18 fuel rods model
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Figure 6a — Multiplying coefficient vs Days in full
scale 12 (Fuel+Gd)rods and 300 fuel rods model

Figure 6b — Multiplying coefficient vs Days in poly
cells 1 (Fuel+Gd)rod and 24 fuel rods model

Graph analysis: Figure 5a, 5b and 6a, 6b shows that, when in the full-scale has 17
(Fuel+Gd) rods, then absorption time is less than 12(Fuel+Gd) rods absorption time.

Result

It is shown that the placement of a burnable absorber in a fuel assembly has both a
quantitative and a qualitative effect on the change in the multiplication factor in the process of
fuel burnup. It should also be noted that the duration of gadolinium burning depends on its

Conclusion

Calculation results on a full-scale model of a WWER polycell simulating fuel
assemblies with pin-by-pin nodalization showed that varying the amount and location of the
burnable poison inside the fuel assemblies get possible to control the reactivity margin for
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burnup and increase the efficiency of nuclear fuel usage in WWER reactors. Such problem is
an optimization problem and can be solved by calculation.
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Abstract. The paper considers various concentrations of burnable absorber (BA) Gadolinium (Gd)
in the system of compensation of excess reactivity in the reactor of WWER type at the extended
campaigns. It is analyzed the influence of the method for the Full-scale and Poly-cells model
placing the burnable absorber in the fuel with gadolinium rods (tveg). The strong influence of the
BAs composition in the fuel with gadolinium rods (tveg) dependence on the multiplication factor
of the fuel burnup is shown.

Keywords: burnable absorber, compensation, reactivity, full-scale model, poly-cellular model,
multiplication factor, burnup.
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