Preview

Nuclear Safety

Advanced search

Clustering of Acoustic Events in Main Circulation Circuit of WWER 1000/1200 Reactor Facility Caused by Normal Technological Operations

https://doi.org/10.26583/gns-2022-03-04

Abstract

The appearance of free, weakly fixed and foreign objects in the main circulation circuit is not ruled out in reactor plants with a pressurized water power reactor. These objects, moving in the coolant flow, can collide with the inner walls of the main circulation circuit, which can lead to equipment damage. Early detection of these objects will minimize damage and improve the safety of NPP operation. The reactor plant is equipped with a system for detecting loose/weakly fixed objects for this purpose. The main problem is a large number of false alarms arising from the registration of noise from the normal operation of the NPP. The paper considers the application of clustering algorithms to signals of the system for detecting loose/weakly fixed objects, which can significantly reduce the number of false alarms as it has been established that signals from the operation of standard equipment are highly repeatable. Then, having “trained” the system on a certain archive of data characterizing the regular functioning of the NPP, we can state that if the newly received signal falls into one of the clusters, then it reflects the normal functioning of the NPP, while the signals do not that fell into any of the clusters may be the result of the appearance of a loose / loosely fixed object, and this situation requires an immediate response from the personnel operating the NPP. This approach makes it possible to reduce the amount of the system for detecting loose/weakly fixed objects output information significantly, reduce the load on the operating personnel, improve the quality of decisions made and, accordingly, increase the safety of operation of the reactor plant as a whole.

About the Authors

G. V. Arkadov
Joint Stock Company "Scientific and Technical Center "Diaprom"
Russian Federation


I. V. Trykova
Joint Stock Company "Scientific and Technical Center "Diaprom"
Russian Federation


K. I. Kotsoev
Joint Stock Company "Scientific and Technical Center "Diaprom"
Russian Federation


References

1. Центр диагностики «Диапром». Система обнаружения свободных предметов в главном циркуляционном контуре ВВЭР-1000 (СОСП). - URL: http://www.diaprom.com/projects/?p=2 (дата обращения: 27.05.2022).

2. Аркадов, Г.В. Системы диагностирования ВВЭР / Г.В. Аркадов, В.И. Павелко, Б.М. Финкель. - Москва : Энергоатомиздат, 2010. - 391 с.

3. Айвазян, С.А. Прикладная статистика. Классификация и снижение размерности / С.А. Айвазян, В.М. Бухштабер, И.С. Енюков, Л.Д. Мешалкин. - Москва : Финансы и статистика, 1989. - 607 с.

4. Скоморохов, А.О. Многомерные статистические методы диагностики аномальных состояний ЯЭУ : диссертация на соискание учений степени доктора технических наук / А.О. Скоморохов. - Обнинск, 2011. - 302 с.

5. Sculley, D. Web-scale k-means clustering // Proceedings of the 19th international conference on World wide web. - USA, 26 April 2010, P. 1177-1178 (in English).

6. Arthur, D., Vassilvitskii, S. k-means++: the advantages of careful seeding // Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics. - Philadelphia, PA, USA, 2007, P. 1027-1035(in English).

7. Ester, M., Kriegel, H.-P., Sander, J., Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise // Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining. - Portland, OR, 1996, P. 226-231 (in English).

8. Mullin, T. DBSCAN Parameter Estimation Using Python. - Jul 10, 2020. - URL: https://medium.com/@tarammullin/dbscan-parameter-estimation-ff8330e3a3bd [дата обращения 27.05.2022] (in English).

9. Pedro Pereira Rodrigues, João Gama, Joao Pedro Pedroso Hierarchical Clustering of Time-Series Data Streams // IEEE Transactions on Knowledge and Data Engineering. - 2008. -Vol. 20, No. 5, P. 615-627. - URL: https://www.researchgate.net/publication/3297889_Hierarchical_Clustering_of_Time-Series_Data_Streams [accessed 05/27/2022] (in English).

10. Жамбю, М. Иерархический кластер-анализ и соответствия / М. Жамбю - Москва : Финансы и статистика, 1988. - 345 с.

11. Amidon, A. How to Apply Hierarchical Clustering to Time Series / A. Amidon. Dec 9, 2020 - URL: https://towardsdatascience.com/time-series-hierarchical-clustering-using-dynamic-time-warping-in-python-c8c9edf2fda5 (дата обращения: 27.05.2022).

12. Späth, H. Cluster Analysis Algorithms / H. Späth - Chichester: Ellis Horwood, 1980. - 226 р.


Review

For citations:


Arkadov G.V., Trykova I.V., Kotsoev K.I. Clustering of Acoustic Events in Main Circulation Circuit of WWER 1000/1200 Reactor Facility Caused by Normal Technological Operations. Nuclear Safety. 2022;(3):43-55. (In Russ.) https://doi.org/10.26583/gns-2022-03-04

Views: 245


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-414X (Print)
ISSN 2499-9733 (Online)