Preview

Nuclear Safety

Advanced search

Test Results of Variance Reduction Techniques Applied to Deep Penetration Problem

https://doi.org/10.26583/GNS-2022-04-03

Abstract

Nowadays, there is a problem of a lack of computer power to conduct high-precision reactor analysis. There are several factors that increase the excessive computational load and make it difficult to calculate nuclear reactor full-scale models using Monte Carlo method. Among them is the large neutron-flux attenuation, which is observed in deep penetration problems. Various reduction techniques are used to increase the efficiency of Monte Carlo calculations in such tasks. It allows to reduce the statistical uncertainty of the functional evaluation without increasing the number of neutron histories. This work is devoted to study and testing of variance reduction techniques in the deep penetration problem. To demonstrate the possibility of using non-analogue Monte Carlo modeling a test problem was formulated. To quantify the efficacy of applying the variance reduction methods, FOM characteristic is considered, which is a function of the relative error in a flux estimate and the computational time of the simulation. The article considers non-analogue techniques implemented in the MCU (Monte Carlo Univarsal) and OpenMC codes. As part of the study, a module of the OpenMC code was developed that allows to automatically generate weight windows. It is shown that variance reduction techniques increase the calculation efficiency by several times, particularly, the weight windows method in OpenMC make it possible to achieve a 7-fold increase in the efficiency of neutron flux estimation with the same number of simulated histories. The formulated recommendations can be used in the calculation of innovative nuclear reactors full-scale models.

About the Authors

E. V. Bogdanova
National Research Nuclear University (MEPhI)
Russian Federation


G. V. Tikhomirov
National Research Nuclear University (MEPhI)
Russian Federation


References

1. Edward W. Larsen (2006) An Overview of Neutron Transport Problems and Simulation Techniques. In: Graziani F. (eds) Computational Methods in Transport. Lecture Notes in Computational Science and Engineering, vol 48. Springer, Berlin, Heidelberg.

2. Paul Kollath Romano. Parallel Algorithms for Monte Carlo Particle TransportSimulation on Exascale Computing Architectures. Massachusetts Institute of Technology, - 2013.

3. Kord Smith, «Reactor Core Methods», Invited lecture at the M&C 2003 International Conference, April 6-10, 2003, Gatlinburg, TN, USA, 2003.

4. Чистяков, В.П. Курс теории вероятностей / В.П. Чистяков. - Москва : Наука, 1982.

5. W.R. MARTIN, «Advances in Monte Carlo Methods for Global Reactor Analysis», Proc. Joint International Topical Meeting on Mathematics & Computation and Supercomputing in Nuclear Applications, Monterey, California, April 15-19, 2007, Invited Lecture.

6. D. Legrady, A. Claret, B. Molnar, G. Tolnai, Verification of the interaction physics of GUARDYAN a novel GPU-based Monte Carlo code for short scale reactor transients, in Proceedings of the PHYSOR, Reactor Physics Paving the Way Towards More Efficient Systems (Cancun, Mexico, 2018), p. 2018.

7. Gross, R., Tomatis, D. & Gilad, E. High-accuracy neutron diffusion calculations based on integral transport theory. Eur. Phys. J. Plus 135, 235 (2020).

8. Kleijnen, J.P.C. Statistical Techniques in Simulation, Part 1. Marcel Dekker, New York (1974).

9. Кольчужкин, А.М. Введение в теорию прохождения частиц через вещество / А.М. Кольчужкин, В.В. Учайкин. - Москва : Атомиздат, 1978, - 256 с.

10. Figure of merit. Merriam-Webster.com Dictionary, Merriam-Webster [Электронный ресурс]. - URL : https://www.merriam-webster.com/dictionary/figure%20of%20merit (дата обращения: 26.02.2021).

11. «MCNPTM-A General Purpose Monte Carlo N-Particle Transport Code», Version 4C, LA-13709-M, J. F. BRIESMEISTER, Ed. (Dec. 2000).

12. S.P. Pederson, R.A. Forster, and T.E. Booth. Confidence Interval Procedures for Monte Carlo Transport Simulations. Nucl. Sci. Eng., 127, 54 (1997).

13. J. Kenneth Shultis and Richard E. Faw. An MCNP Primer. Dept. of Mechanical and Nuclear Engineering, Kansas State University. December, 2011.

14. S.N. Cramer, J.S. Tang. Variance reduction methods applied to deep-penetration Monte Carlo problems. Engineering Physics and Mathematics Division. ORNL/TM-9643, DE86 007080, 1986.

15. Суслов, И.Р. Гибридный метод расчета защиты ЯЭУ / И.Р. Суслов, И.А. Лямцев // Препринт ФЭИ-3267. - Обнинск, 2016. - 15 с.

16. Thomas E. Booth. A sample problem for variance reduction in MCNP. Technical Report, Los Alamos National Laboratory, LA-10363-MS, 1985.

17. Статус MC -5 / Н.И. Алексеев, С.Н. Большагин, Е.А. Гомин [др.] // Вопросы атомной науки и техники. Сер.: Физика ядерных реакторов. - 2011. - № 4. - С. 4-23.

18. Paul K. Romano and Benoit Forget, «The OpenMC Monte Carlo Particle Transport Code», Ann. Nucl. Energy, 51, 274-281 (2013).

19. Cristian G. Bucher. Adaptive sampling - an iterative fast Monte Carlo procedure. Structural Safety, (1998), Volume 5, pp. 119-126.

20. Booth, T.E. and J.S. Hendricks (1984), Importance Estimation in Forward Monte Carlo Calculations, Nucl. Techno U Fusion, 5, p. 90.

21. Leppänen, J., et al. (2015) «The Serpent Monte Carlo code: Status, development and applications in 2013». Ann. Nucl. Energy, 82 (2015) 142-150.

22. Cooper, M.A., Larsen, E.W. Automated weight windows for global Monte Carlo particles transport calculations. Nuclear Science and Engineering, 137, 1-13, 2001.

23. A.J. van Wijk, G. Van den Eynde, J.E. Hoogenboom. An easy to implement global variance reduction procedure for MCNP. Annals of Nuclear Energy 38 (2011) 2496-2503.

24. Yuan Hu, Sha Yan, Yuefeng Qiu, Yu Zheng. Implementation and benchmarking of an automatic global variance reduction method on OpenMC. Fusion Engineering and Design, Volume 173, 2021, 112829.

25. Christopher N. Culberts, JohnS. Hendricks. An Assessment of the MCNP4C Weight Window. LA-13668, 1999.


Review

For citations:


Bogdanova E.V., Tikhomirov G.V. Test Results of Variance Reduction Techniques Applied to Deep Penetration Problem. Nuclear Safety. 2022;45(4):25-39. (In Russ.) https://doi.org/10.26583/GNS-2022-04-03

Views: 238


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-414X (Print)
ISSN 2499-9733 (Online)