Information Transmission Features of Live Mode Radio Channel When Using Unmanned Dosimetry Complex
https://doi.org/10.26583/gns-2023-01-01
Abstract
The accident at the Fukushima NPP has revealed a certain drawback of traditional methods of registration of ionizing radiation by means of the automated radiation monitoring system, because in the conditions of the accident at the NPP the monitoring posts of the system were damaged as a result of the tsunami (23 of 24), which did not allow to evaluate the degree of radioactive contamination of the area in the early stages. In such conditions the most promising method of radiation control carried out on the potentially hazardous area is a non-contact method using an unmanned dosimetry complex (UDC), the application of which would reduce the risk of exposure to additional dose loads of personnel carrying out search and reconnaissance work and, additionally, provide management not only with information regarding radioactive contamination of the environment, but also directly provide the results of the search and reconnaissance. However, apart from the equipment used to determine the radiation background (detectors, spectrometers, radiometers, etc.) an important part of the UDC is the organization of the dosimetry complex and the way of information transfer.
A possible variant of data transmission channel from the dosimetry complex installed on the UDC to the operator's personal computer is presented using NRF radio modules as an example.
About the Authors
Ivan A RodionovRussian Federation
Alexander P Elokhin
Russian Federation
Alexander B Rakhmatulin
Russian Federation
Sergey E Ulin
Russian Federation
Azizbek I Majidov
Russian Federation
Alexander E Shustov
Russian Federation
References
1. Stohl, A., Seibert, P., Wotawa G., Arnold D., Burkhart J. F., Eckhardt S., Tapia C., Vargas A., and Yasunari T. J. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition. Atmospheric Chemistry and Physics. 12. 2313–2343. https://doi.org/10.5194/acp-12-2313-2012.
2. moto, A., 2013. Nuclear Instruments and Methods in Physics Research Section a: Accelerators, Spectrometers, Detectors and Associated Equipment.
3. Nuclear Accident Independent Investigation Commission. 2012. The Official Report of the Fukushima Nuclear Accident Independent Investigation Commission. NAIIC. Tokyo.
4. Povinec, P.P., Hirose, K., Aoyama, M., 2013. Fukushima Accident. Elsevier, Boston.
5. Елохин, А.П. Методы и средства систем радиационного контроля окружающей среды / А.П. Елохин // Монография. – Москва: НИЯУ МИФИ, 2014. – 520 с.
6. Елохин, А.П. Методы оценки радиоактивного загрязнения подстилающей поверхности /И.А. Родионов, А.П. Елохин // Глобальная ядерная безопасность. – 2022. – №1 (42). – С. 6–23.
7. Data sheet. BMP280 Digital Pressure Sensor. https://amperkot.ru/static/3236/uploads/datasheets/BST-BMP280.pdf.
8. NEO-6 u-blox 6 GPS Modules. Data Sheet. https://content.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_%28GPS.G6-HW-09005%29.pdf.
9. Šáleka O., Matolína M., Grycb L. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry // Journal of Environmental Radioactivity 182 (2018) 101–107.
10. Parshin А., Morozov V., Snegirev N., Valkova E., Shikalenko F. Advantages of Gamma-Radiometric and Spectrometric Low-Altitude Geophysical Surveys by Unmanned Aerial Systems with Small Scintillation Detectors. Appl. Sci. 2021, 11, 224. https://doi.org/10.3390/app11052247/.
11. Yuki Sato, Shingo Ozawa, Yuta Terasaka, Kojiro Minemoto, Satoshi Tamura, Kazutoshi Shingu, Makoto Nemoto, Tatsuo Torii. Remote detection of radioactive hotspot using a Compton camera mounted on a moving multi-copter drone above a contaminated area in Fukushima. Journal of nuclear science and technology. – 2020. – Vol. 57, №. 6. – pp. 734–744.
12. nRF24L01+ Single Chip 2.4GHz Transceiver Product Specification v1.0. Datasheet. https://infocenter.nordicsemi.com/pdf/nRF24L01P_PS_v1.0.pdf.
13. Радиомодуль NRF24L01+ / PA+LNA 2.4G (Trema-модульV2.0). https://wiki.iarduino.ru/page/NRF24L01-trema/
14. Novikov, A.S., Ulin, S.E., Dmitrenko, V.V., Uteshev, Z.M., Vlasik, K.F., Grachev, V.M., Efremenko, Y.V., Chernysheva I.V., Shustov A.E. New modification of xenon gamma-ray detector with high energy resolution. Optical Engineering. – Vol. 53, Issue 2, 021108 (November 2013). https://doi.org/10.1117/1.OE.53.2.021108.
15. Болоздыня, А.И. Экспериментальная ядерная физика. Лекция №6. Гамма-излучение ядер / Болоздыня А.И. // ИФТИС НИЯУ МИФИ. Лаборатория экспериментальной ядерной физики. – 2017. – 32 с. http://enp.mephi.ru.
16. Гусев, Н.Г., Дмитриев, П.П. Квантовое излучение радиоактивных нуклидов / Н.Г. Гусев, П.П. Дмитриев. – Москва: Атомиздат, 1977. – 394 с.
Review
For citations:
Rodionov I.A., Elokhin A.P., Rakhmatulin A.B., Ulin S.E., Majidov A.I., Shustov A.E. Information Transmission Features of Live Mode Radio Channel When Using Unmanned Dosimetry Complex. Nuclear Safety. 2023;(1):5-13. (In Russ.) https://doi.org/10.26583/gns-2023-01-01