Preview

Nuclear Safety

Advanced search

Verification of the WWER-1200 reactor dynamic model consisting of one-fuel unit adjacent to two coolant units

https://doi.org/10.26583/gns-2023-03-08

EDN: YBZMTK

Abstract

As modern control systems engineering imposes limits on mathematical models of control objects, further development, and verification of the mathematical models suitable for power control system synthesis of nuclear power facilities is an ongoing problem. This article deals with the low-order dynamics model with lumped parameters of the Russian-designed pressurized water reactor, as well as its verification with experimental data from the full-size simulator of the WWER – 1200 nuclear reactor within two tests related to changing the position of Group 12 of CPS CR and changing the inlet coolant temperature. This model was created as a MATLAB S-function lv.2 model because of its capability to handle any type of signal.  Within this approach, the equation describing the coolant heating process is represented as a «two well-stirred tanks in series» model. The article demonstrates the upside of the given approach in comparison with the conventional approach, where the average temperature of the coolant is determined as an arithmetic mean of inlet and outlet coolant temperatures, respectively, on the basis of the test with a sudden change of the reactor inlet coolant temperature. In the frequency domain, the authors carry out stability analyses of the given model in a state-space form in relation to different external disturbances. Conclusions about the suitability of the given model as a fifth-order control object for parametric synthesis of a controller for the power control system of a nuclear power facility are drawn.

About the Authors

S. S. Pravosud
Rosatom Technical Academy, Seversk Technological Institute the branch of National Research Nuclear University «MEPhI»
Russian Federation

First category engineer for personnel training of the Department of Measuring Systems and Metrology

Instructor of the Department of Electronics and Automatics of Physical Facilities



D. S. Maslakov
Seversk Technological Institute the branch of National Research Nuclear University «MEPhI»
Russian Federation

, 6th year student of the Department of Electronics and Automatics of Physical Facilities



Ya. O. Yakubov
Seversk Technological Institute the branch of National Research Nuclear University «MEPhI»
Russian Federation

5th year student of the Department of Electronics and Automatics of Physical Facilities



A. A. Ovcherenko
Rosatom Technical Academy
Russian Federation

Executive assistant 



References

1. Pikina G.A., Dinh L.V., Pashchenko A.F., Pashchenko F.F. The dynamic models of water-water nuclear reactor with temperature reactivity coefficients. IEEE 10th Conference on industrial electronics and applications (ICIEA). Auckland. New Zealand 2015. Р. 1014–1019. doi: 10.1109/ICIEA.2015.7334256.

2. Jiang Y., Geslot B., Lamirand V., Leconte P. Review of kinetic modulation experiments in low power nuclear reactors. European Journal of Physics N (EPJ-N) Nuclear sciences and technologies. 2020;(6):55. https://doi.org/10.1051/epjn/2020017

3. Liu X., Wang M. Nonlinear fuzzy model predictive control for a PWR nuclear power plant. Mathematical Problems in Engineering. 2014; 908526. https://doi.org/10.1155/2014/908526

4. Zaidabadi nejad M., Ansarifar G.R. Robust feedback-linearization control for axial power distribution in pressurized water reactors during load-following operation. Nuclear engineering and technology. 2018;(50)1:97–106. https://doi.org/10.1016/j.net.2017.10.013

5. Pilehvar A.F., Esteki M.H., Hedayat A., Ansarifar G.R. Self-pressurization analysis of the natural circulation integral nuclear reactor using a new dynamic model. Nuclear engineering and technology. 2018;(50)5:654–664. https://doi.org/10.1016/j.net.2018.03.019

6. Mousakazemi S.M.H., Ayoobian N., Ansarifar G.R. Control of the pressurized water nuclear reactors power using optimized proportional – integral- derivative controller with particle swarm optimization algorithm. Nuclear engineering and technology. 2018;(50)6:877–885. https://doi.org/10.1016/j.net.2018.04.016

7. Вольман М.А. Моделирование переходных процессов в реакторе ВВЭР-1000 для предварительной подготовки оперативного персонала. Известия высших учебных заведений. Проблемы энергетики. 2016;(9-10):112–118. https://doi.org/10.30724/1998-9903-2016-0-9-10-112-118

8. Семенов В.К., Вольман М.А. Обоснование математической модели теплообмена для реактора с сосредоточенными параметрами. Глобальная ядерная безопасность. 2015;4(17):35–42. URL: https://viti-mephi.ru/sites/default/files/pages/docs/4_2015.pdf (дата обращения: 26.05.2023).

9. Ball S.J. Approximate models for distributed parameter heat transfer systems. 1963. 139 р. URL: https://openlibrary.org/works/OL2662120W/Approximate_models_for_distributed-parameter_heat-transfer_systems?edition=key%3A/books/OL13953850M (дата обращения: 26.05.2023).

10. Upadhyaya B.R., Lish M.R., Hines J.W., Tarver R.A. Instrumentation and control strategies for an integral pressurized water reactor. Nuclear engineering and technology. 2015;(47)2:148–156. http://dx.doi.org/10.1016/j.net.2015.01.001

11. Vajpayee V., Top E., Becerra V.M. Analysis of Transient Interactions between a PWR nuclear power plant and a faulted electricity grid. Energies 2021;14(6):1573. https://doi.org/10.3390/en14061573

12. Wan J., Wang P., Wu Sh., Zhao F. Controller design and optimization of reactor power control system for ASPWR. Progress in nuclear energy. 2017;100:233–244. https://doi.org/10.1016/j.pnucene.2017.06.006

13. Singh S.S., Mohapatra D. Solution of the reactor point kinetics equations by matlab computing. Nuclear Technology and Radiation Protection. Year 2015;30(1):11–17 https://doi.org/10.2298/NTRP1501011S

14. Prokopev A., Nabizhanov Z., Ivanchura V., Emelyanov R. Design of controllers for higher order systems. International multi-conference on engineering. Computer and information sciences (SIBIRCON). Novosibirsk, Russia. 2019. Р. 0607–0611. doi: 10.1109/SIBIRCON48586.2019.8958442


Supplementary files

Review

Статья посвящена актуальной для атомной энергетики теме моделирования динамики ядерных реакторов с целью обоснования безопасности. Авторами предложена модель динамики элементарной единицы, используемой для моделирования реактора в целом. Показано, что предложенная модель лишена недостатка классической модели, при этом может быть линеаризована для дальнейшего использования в задачах синтеза регуляторов и систем управления.

Статья написана на высоком научно-техническом уровне и опирается на детальный анализ предметной области и всестороннее рассмотрение объекта моделирования и математической модели. Задача исследования поставлена чётко. Терминология и ссылочный аппарат применены корректно. К статье существенных замечаний не имеется. Замечания, носящие технический характер, даны по тексту работы. Практическая ценность исследования для атомной энергетики могла бы быть показана более ярко, но данный недостаток не является существенным и может быть отнесён к авторскому стилю. Авторам рекомендуется в следующих работах уделить больше внимания именно количественным оценкам расхождения разработанных ими моделей с данными, принимаемыми за эталонные.

В связи с этим считаю, что статья обладает высокой научно-практической ценностью и может быть опубликована в журнале «Глобальная ядерная безопасность» при условии исправления замечаний.

For citations:


Pravosud S.S., Maslakov D.S., Yakubov Ya.O., Ovcherenko A.A. Verification of the WWER-1200 reactor dynamic model consisting of one-fuel unit adjacent to two coolant units. Nuclear Safety. 2023;48(3):82-95. (In Russ.) https://doi.org/10.26583/gns-2023-03-08. EDN: YBZMTK

Views: 700


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-414X (Print)
ISSN 2499-9733 (Online)