Preview

Nuclear Safety

Advanced search

Comparative experiment on the efficiency of water cooling in photovoltaic modules in the climatic conditions of Southern Russia

https://doi.org/10.26583/gns-2023-04-02

EDN: HJLZIN

Abstract

The problems of ensuring the safety of operation of nuclear power plants are always paid increased attention. In addition to the self-contained diesel generator sets used to maintain the operation of safety systems in case of loss of external power supply, it is also advisable to consider the use of more environmentally friendly self-contained photovoltaic units at this stage. The work is aimed at a comparative experimental study of the efficiency of water cooling in real natural climatic conditions of Southern Russia. In this experiment, cooled and uncooled photovoltaic modules are simultaneously exposed to a complex of variable weather factors: solar radiation, cloudiness, wind, pressure, temperature and humidity of the environment. Both modules have loads connected via MPPT controllers. The effect of water cooling on the energy efficiency of photovoltaic modules assembled from silicon heterojunction technology (HJT) solar cells was studied. The solar panels were made from 130 micron thick HJT cells interconnected using SmartWire contact technology. It reduces power loss due to possible defects such as cracks. The conditions for ensuring the highest degree of similarity between the parameters of the cooled and uncooled modules have been met. A comparative experimental study was conducted in Astrakhan State University using a long-term monitoring system for the characteristics of photovoltaic modules. This is a test photovoltaic system (TPS), built on the basis of the Paragraph PL2 electronic recorder. A significant increase in module output when working with cooling was established. At insolation of 987.5 W/m2, the power generated by the cooled module was 93.0297 W, while the power of the module without cooling was 79.306 W. The difference comprised 13.7237 watts. Power increased by 17%. In the experiment, the average efficiency value when the module was cooled was 0.15977. When uncooled, it was 0.13764. The efficiency intensified by 2.21%. This increase is significant. The results obtained confirm the fairly high efficiency of water cooling in photovoltaic modules in real natural operating conditions for regions with high ambient temperatures, Southern Russia, in particular

About the Authors

V. G. Ilyichev
Astrakhan Tatishchev State University
Russian Federation

research associate



L. Kh. Zaynutdinova
Astrakhan Tatishchev State University
Russian Federation

Cand. Sci. (Eng.), Doctor of Pedagogical Sciences, Professor, Lead Researcher



E. I. Terukov
R&D Center of Thin Film Technologies in Energetics
Russian Federation

Doctor of Technical Sciences, Deputy director for science, R&D Center of Thin Film Technologies in Energetics



M. Yu. Mikhailov
R&D Center of Thin Film Technologies in Energetics
Russian Federation

process engineer, R&D Center of Thin Film Technologies in Energetics



References

1. Adnan Ahmed Siddique, Akram Mohiuddin Syed Mohammed Nahri. Effects of surface temperature variations on output power of three commercial photovoltaic modules. International Journal of Engineering Research & technology (IJERT). 2016;5(11):12–16. Available at: https://www.ijert.org/research/effects-of-surface-temperature-variations-on-output-power-of-three-commercial-photovoltaic-modules-IJERTV5IS110009.pdf (accessed: 15.07.2023).

2. Malagouda Patil, Alur Sidramappa, Rajashekhargoud Angadi. Experimental investigation of enhancing the energy conversion efficiency of solar PV cell by water cooling mechanism. IOP Conference Series: Materials Science and Engineering. 2018;376(1):012014. https://doi.org/10.1088/1757-899X/376/1/012014 Available at: https://iopscience.iop.org/article/10.1088/1757-899X/376/1/012014/pdf (accessed: 15.07.2023).

3. Троицкий А.О., Серадская О.В., Кирпичникова И.М. Основные факторы снижения КПД солнечных установок и способы поддержания номинального КПД. Энерго-и ресурсосбережение в теплоэнергетике и социальной сфере: материалы международной научно-технической конференции студентов, аспирантов, ученых. Южно-Уральский государственный университет (национальный исследовательский университет). 2015;3(1):222–225. EDN: TRSQTZ Режим доступа: https://www.elibrary.ru/download/elibrary_23384244_61233041.pdf (дата обращения: 15.07.2023).

4. Дубинин Д.В., Лаевский В.Е. Энергетическая эффективность работы солнечных батарей в реальных режимах эксплуатации. Известия томского политехнического университета. Инжиниринг георесурсов. 2015;3(326):58–62. EDN: TSXNHT. Режим доступа: https://www.elibrary.ru/download/elibrary_23438495_82878854.pdf (дата обращения: 15.07.2023).

5. Джумаев А.Я. Анализ влияния температуры на рабочий режим фотоэлектрической солнечной станции. Технические науки – от теории к практике: сборник статей по материалам 46-й международной научно-практической конференции. Новосибирск: Сибак, 2015. 2015;5(42):33–40. EDN: TWOZVD. Режим доступа: https://www.elibrary.ru/download/elibrary_

6. _35862862.pdf (дата обращения 15.07.2023).

7. Кирпичникова И.М., Махсумов И.Б. Построение энергетических характеристик солнечных модулей с учетом условий окружающей среды. Вестник Пермского государственного технического университета. Электротехника, информационные технологии, системы управления. 2020;(34):56–74. EDN: FZIWGM. Режим доступа: https://www.elibrary.ru/download/elibrary_43803124_89485757.pdf (дата обращения 15.07.2023).

8. Mohamed Sharaf, Mohamed S. Yousef, Ahmed S. Huzayyin. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental Science and Pollution Research. 2022;29(18):26131–26159. https://doi.org/10.1007/s11356-022-18719-9

9. Ibtisam Ahmed Hasan, Iman Saleh, Kareem Duha, Adil Attar. Effect of evaporative cooling combined with heat sink on pv module performance. Journal of University of Babylon for Engineering Sciences. Electro mechanical Engineering Department University of Technology Baghdad, Iraq. 2019;(27)2:252–254. https://doi.org/10.13140/RG.2.2.23413.42728

10. Mehrotra S., Rawat P., Debbarma M., Sudhakar K. Performance of a solar panel with water immersion cooling technique. International Journal of Science, Environment ISSN 2278-3687 (O) and Technology. 2014;3(3):1161–1172. Available at: https://www.researchgate.net/publication/263448324 (accessed: 15.07.2023).

11. Irwan Y.M., Leow W.Z., Irwanto M. et al. Indoor test performance of PV panel through water cooling method. Energy Procedia. 2015;79:604–611. https://doi.org/10.1016/j.egypro.2015.11.540

12. Leow Wai Zhe, Mohd. Irwan Yusoff, Amelia Abd Razak, Muhammad Irwanto Misrun, Safwati Ibrahim, Muhammad Izuan Fahmi, Afifah Shuhada Rosmi. Effect of Water Cooling Temperature on Photovoltaic Panel Performance by Using Computational Fluid. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences. 2019;56(1):133–146. Available at: https://www.akademiabaru.com/doc/ARFMTSV56_N1_P133_146.pdf (accessed: 15.07.2023).

13. Benato A., Stoppato, A. An Experimental Investigation of a Novel Low-Cost Photovoltaic Panel Active Cooling System. Energies. 2019;12(8):1448. https://doi.org/10.3390/en12081448

14. Зайнутдинова Л.Х. , Ильичев В.Г. , Джамбеков Р.Г. Экспериментальное исследование нагрева фотоэлектрического модуля Pramac-125. Физико-химические проблемы возобновляемой энергетики: сборник трудов российской конференции, 21-23 ноября 2022 г., Санкт-Петербург. Санкт-Петербург: ПОЛИТЕХ-ПРЕСС, 2022. С. 99–100. ISBN 978-5-7422-7926-6. https://doi.org/10.18720/SPBPU/2/id22-248

15. Faes A., Despeisse M., Levrat J. et al. SmartWire Solar Cell Interconnection Technology. 29-th EU PVSEC. 2014. Р.2555-2561 (2014). https://doi.org/10.4229/EUPVSEC20142014-5DO.16.3

16. Братышев С.Н., Зайнутдинова Л.Х., Ильичев В.Г., Титов А.С. Информационно-измерительная система долгосрочного мониторинга характеристик фотоэлектрических модулей. Проблемы получения, обработки и передачи измерительной информации: материалы II Международной научно-технической конференции. Уфимский государственный авиационный технический университет. Уфа: РИК УГАТУ, 2019. С.281–286. EDN: MFRIHH. Режим доступа: https://www.elibrary.ru/download/elibrary_41446854_91814858.pdf (дата обращения: 15.07.2023).


Review

For citations:


Ilyichev V.G., Zaynutdinova L.Kh., Terukov E.I., Mikhailov M.Yu. Comparative experiment on the efficiency of water cooling in photovoltaic modules in the climatic conditions of Southern Russia. Nuclear Safety. 2023;(4):11-21. (In Russ.) https://doi.org/10.26583/gns-2023-04-02. EDN: HJLZIN

Views: 178


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-414X (Print)
ISSN 2499-9733 (Online)