Preview

Nuclear Safety

Advanced search

Radioecological situation in certain areas of the Southern Federal District

https://doi.org/10.26583/gns-2024-01-03

EDN: CUEEXB

Abstract

Radioecological monitoring of natural and urban areas is intended not only to assess the consequences of the operation of nuclear fuel energy enterprises, but also to ensure radiation safety of humans and the environment. This type of research allows not only to identify areas with increased background radiation, but also to reduce social tension in the population associated with radiophobia. This paper presents the results of long-term studies of the ambient dose equivalent rate (ADR) of gamma radiation within urban and rural settlements of the Southern Federal District using the example of the Krasnodar Territory. ADR measurements were carried out at a height of 100 cm from the earth's surface using dosimeters-radiometers SRP-88n, DRBP-03 and DKS-96s with a detection unit BDKS-96s using pedestrian gamma survey methods. The study regions represent different types of landscapes: steppe plain territories, the foothills of the North Caucasus and the Black Sea coast. It is shown that the arithmetic average ADR values in urban conditions are 0.11 μSv/h, and in rural settlements – 0.14 μSv/h. Similar results may be due to differences in soil and climatic conditions in different settlements. In general, differences in gamma radiation ADR may be due to a greater extent to measurement uncertainty (standard deviation), and also, to a lesser extent, to relief features and the content of radionuclides in the soils of a given region. The radiation situation in the Krasnodar Territory at the time of the study complies with the requirements
of SanPiN 2.6.1.2612-10. The gamma radiation equivalent dose rate values are within the limits of natural background fluctuations characteristic of the Russian Federation.

About the Authors

D. P. Plahotnyаyа
Южный федеральный университет
Russian Federation

research assistant



E. A. Buraeva
Южный федеральный университет
Russian Federation

Can. Sci. (Chem.), Dr. Sci. (Bio.), Associate Professor, Leading Researcher



V. I. Ratushnyj
Dr. Sci. (Phys. Math.), Professor, Head of the Department of Physical and Mathematical Disciplines
Russian Federation


References

1. Пономаренко П.А., Фролова М.А., Кравченко Н.В. Анализ радионуклидной активности и годовой эквивалентной дозы, создаваемой природными радионуклидами. Энергетические установки и технологии. 2016;2(1):93–99. Режим доступа: https://www.sevsu.ru/upload/iblock/b38/agk6yvvjevz5u98emyfn0thgfc8hxrvk/Energy2016-1.pdf (дата обращения: 27.06.2023).

2. Онищенко Г.Г., Романович И.К. Деятельность Роспотребнадзора по обеспечению радиационной безопасности населения России. Здравоохранение Российской Федерации. 2013;2:35–40. Режим доступа: https://www.elibrary.ru/download/elibrary_18792698_43388497.pdf (дата обращения: 01.06.2023).

3. Кулганов В.А., Соколов Д.А. Социально-экологические последствия антропогенного и военного воздействия на природную среду. 2017 год глазами ученых: результаты научных исследований: Сборник трудов. Краснодар. 2018. С. 85–92. Режим доступа: https://pureportal.spbu.ru/ru/publications/--------(59790bed-555d-44d5-ad39-3718339173cd)/export.html (дата обращения: 01.06.2023).

4. Кулганов В.А., Косырев С.В., Васнецов К.С. К вопросу оценки поражающего воздействия ионизирующего излучения на человека и защиты от него. Технологии гражданской безопасности. 2023;20:1(75):83–89. Режим доступа: https://vniigochs.ru/upload/medialibrary/24e/ubpxh7se80orjwm0opwg493bti9jh7zg/tgb_text_1_2023-83-89.pdf (дата обращения: 05.01.2024).

5. Акатова А.А., Ефремова М.А. Содержание радионуклидов в почвах автоморфных и гидроморфных ландшафтов Лужского района Ленинградской 38 области. Известия Санкт-Петербургского государственного аграрного университета. 2018;4(53):87–93. https://doi.org/10.24411/2078-1318-2018-14087

6. Орлов П.М., Сычев В.Г., Жиленко С.В. Радиологический мониторинг почв земель сельскохозяйственного назначения Краснодарского края. XXI век: итоги прошлого и проблемы настоящего плюс. 2015;5(27):45–50. Режим доступа: https://vek21.penzgtu.ru/wp-content/uploads/2020/04/2015_27.pdf (дата обращения: 27.06.2023).

7. Appleton J.D., Kendall G.M. Gamma-radiation levels outdoors in Great Britain based on K, Th and U geochemical data. Journal of Environmental Radioactivity. 2022;251–252:106948. https://doi.org/10.1016/j.jenvrad.2022.106948

8. Folly C.L., Konstantinoudis G., Mazzei-Abba A., Kreis C., Bucher B., Furrer R., Spycher B.D. Bayesian spatial modelling of terrestrial radiation in Switzerland. Journal of Environmental Radioactivity. 2021;233:106571 https://doi.org/10.1016/j.jenvrad.2021.106571

9. Beamish D. Relationships between gamma-ray attenuation and soils in SW England. Geoderma. 2015;259–260:174–186. https://doi.org/10.1016/j.geoderma.2015.05.018

10. Beamish D. Environmental radioactivity in the UK: the airborne geophysical view of dose rate estimates. Journal of Environmental Radioactivity. 2014;138:249–263. https://doi.org/10.1016/j.jenvrad.2014.08.025


Review

For citations:


Plahotnyаyа D.P., Buraeva E.A., Ratushnyj V.I. Radioecological situation in certain areas of the Southern Federal District. Nuclear Safety. 2024;14(1):22-28. (In Russ.) https://doi.org/10.26583/gns-2024-01-03. EDN: CUEEXB

Views: 166


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-414X (Print)
ISSN 2499-9733 (Online)