Multipoint kinetics model with power reactivity defect for the axial offset control in the VVER-1200 nuclear reactor during the load following mode of operation
https://doi.org/10.26583/gns-2024-02-07
EDN: LQRKEU
Abstract
This article proposes the multipoint kinetics model consisting with different number of point kinetics model (two points, four points, six points, eight points, ten points) in the axial direction for the
VVER-1200 nuclear reactor. Each node is coupled with others through the coupling coefficients determined from the diffusion approach. For more precise description of the dynamical modes of the reactor operation, the proposed model integrates the power reactivity feedback derived from temperature reactivity coefficients and Mann’s thermal hydraulic model which assumes one fuel node adjacent to two coolant nodes. On the model with four axial points, additionally was tested the influence of the different number of delayed neutrons groups on the accuracy results and model running time during the load-following mode of operation. Moreover, the novel model of the control rods is introduced, utilizing a combination of sign functions to sequentially influence all nodes during insertion or withdrawal. The computational results show that the accuracy of the proposed model is satisfactory, and general assumptions about transients align with their physical definitions. This research contributes to the advancement of the point-like nuclear reactor modeling for improvement of the automatic power controller synthesis.
About the Authors
S. S. PravosudRussian Federation
First category engineer for personnel training of the Educational and Methodological Centre of Nuclear and Radiation Safety
Instructor of the Department of Electronics and Automatics of Physical Facilities
Ya. O. Yakubov
Russian Federation
5th year student of the Department of Electronics and Automatics of Physical Facilities
V. A. Susakin
Russian Federation
3rd year student of the Department of Machinery and Apparatus of Chemical and Atomic Enterprises
References
1. Henry A. The application of reactor kinetics to the analysis of experiments. Nuclear Science and Engineering. 1958;3(1):52–70. https://doi.org/10.13182/NSE58-1
2. Соловьёв Д.А., Хачатрян А.Г., Чернов Е.В., Аль Малкави Р.Т. Исследование алгоритмов подавления ксеноновых колебаний в реакторе ВВЭР-1200. Известия вузов. Ядерная энергетика. 2022;2:37–48. https://doi.org/10.26583/npe.2022.2.04
3. Avery R. Theory of coupled reactors. In: Proc. 2nd UN Int. Conf. Peaceful Uses of Atomic Energy, United Nations. 1958. Vol. 12. P. 182. https://doi.org/10.2172/4315469
4. Belleni-Morante A. The kinetic behaviour of a reactor composed of G loosely coupled cores: Integral formulation. Journal of Nuclear Energy. Parts A/B. Reactor Science and Technology. 1964;18(10):547–559. https://doi.org/10.1016/0368-3230(64)90139-9
5. Kobayashi K. Rigorous derivation of multi-point reactor kinetics equations with explicit dependence on perturbation. Journal of Nuclear Science and Technology. 1992;29(2):110–120. https://doi.org/10.1080/18811248.1992.9731503
6. Valocchi G., Tommasi J., Ravetto P. Reduced order models in reactor kinetics: A comparison between point kinetics and multipoint kinetics. Annals of Nuclear Energy. 2020;147:107702. https://doi.org/10.1016/j.anucene.2020.107702
7. Zhe Dong, Xiaojin Huang, Liangju Zhang A nodal dynamic model for control system design and simulation of an MHTGR core. Nuclear Engineering and Design 240 (240), 1251-261. https://doi.org/10.1016/j.nucengdes.2009.12.032
8. Wang P.F., Liu Y., Jiang B.T., Wan J.S., Zhao F.Y. Nodal dynamics modeling of AP1000 reactor for control system design and simulation. Annals of Nuclear Energy. 2013;62:208–223. http://dx.doi.org/10.1016/j.anucene.2013.05.036
9. Puchalski B., Rutkowski T.A., Duzinkiewicz K. Nodal models of Pressurized Water Reactor core for control purposes – A comparison study. Nuclear Engineering and Design. 2017;322:444–463. http://dx.doi.org/10.1016/j.nucengdes.2017.07.005
10. Puchalski B., Rutkowski T.A., Duzinkiewicz K. Multi-nodal PWR reactor model – Methodology proposition for power distribution coefficients calculation. 21st International Conference on Methods and Models in Automation and Robotics (MMAR). Poland: Miedzyzdroje, 2016. Р. 385–390. https://doi.org/10.1109/MMAR.2016.7575166
11. Žerovnik G., Čalič D., Gerkšič S., Kromar M., Malec J., Mihelčič A., Trkov A., Snoj L. An overview of power reactor kinetics and control in load-following operation modes. Frontiers in Energy Research. 2023;11:1111357. https://doi.org/10.3389/fenrg.2023.1111357
12. Mousakazemi S.M.H. Control of a pressurized light-water nuclear reactor two-point kinetics model with the performance index-oriented PSO. Nuclear Engineering and Technology. 2021;53(8):2556–2563 https://doi.org/10.1016/j.net.2021.02.018
13. Zaidabadi nejad M., Ansarifar G.R. Adaptive robust control for axial offset in the P.W.R nuclear reactors based on the multipoint reactor model during load-following operation. Annals of Nuclear Energy. 2017;103:251–264. http://dx.doi.org/10.1016/j.anucene.2017.01.025
14. Aftab А., Luan Х. A Takagi Sugeno based reactor power control of VVER-1000 using linear parameter varying identification of two-point kinetic model. Progress in Nuclear Energy. 2021;140:103905. https://doi.org/10.1016/j.pnucene.2021.103905
15. Abdulraheem K.К., Tolokonsky A.O., Laidani Z. Adaptive second order sliding mode control for a pressurized water nuclear reactor in load following operation with Xenon oscillation suppression. Nuclear Engineering and Design. 2022:391:111742 https://doi.org/10.1016/j.nucengdes.2022.111742
16. Spriggs G.D., Campbell J.M., Piksaikin V.M. An 8-group delayed neutron model based on a consistent set of half-lives. Progress in Nuclear Energy. 2002;41(1-4):223–251. https://doi.org/10.1016/s0149-1970(02)00013-6
17. Skinner R.E., Cohen E.R. Reduced Delayed Neutron Group Representations. Nuclear Science and Engineering. 1959;5(5):291–298. https://doi.org/10.13182/NSE59-A25601
18. Вольман М.А. Имитационное моделирование нейтронно-физических и теплогидравлических процессов в реакторах ВВЭР-1000. Диссертация на соискание ученой степени кандидата технических наук по специальности 05.14.03 Ядерные энергетические установки, включая проектирование, эксплуатацию и вывод из эксплуатации. Москва, 2017. 135 с. EDN NTLFZT. Режим доступа: https://search.rsl.ru/ru/record/01008925788 (дата обращения: 10.04.2024).
19. Казанский Ю.А., Слекеничс Я.В. Мощностной коэффициент реактивности: определение, связь с коэффициентами реактивности, оценка результатов переходных процессов энергетических реакторов. Известия вузов. Ядерная энергетика. 2018;1:63–74. https://doi.org/10.26583/npe.2018.1.07
20. Правосуд С.С., Маслаков Д. С., Якубов Я. О., Овчеренко А.А. Верификация модели динамики ядерного реактора ВВЭР-1200, состоящей из одного топливного узла, примыкающего к двум узлам теплоносителя. Глобальная Ядерная Безопасность. 2023;13(3):82–95. EDN: YBZMTK. https://doi.org/10.26583/gns-2023-03-08
21. Правосуд С.С., Маслаков Д.С., Якубов Я.О. Применение нечетких регуляторов для управления мощностью ядерного реактора ВВЭР-1200. Вестник НИЯУ МИФИ. 2024;13(2):97-109. EDN: QBFVFE. https://doi.org/10.26583/vestnik.2024.320
Review
For citations:
Pravosud S.S., Yakubov Ya.O., Susakin V.A. Multipoint kinetics model with power reactivity defect for the axial offset control in the VVER-1200 nuclear reactor during the load following mode of operation. Nuclear Safety. 2024;14(2):73-90. (In Russ.) https://doi.org/10.26583/gns-2024-02-07. EDN: LQRKEU