Investigation of the impact of the physical and chemical factors during correction treatment of NPP unbalance water to ensure compliance of conditioned radioactive waste with regulatory requirements
https://doi.org/10.26583/gns-2024-04-01
EDN: FNSFJI
Abstract
The paper considers the results of a study of the decomposition of surfactants in the unbalanced waters of nuclear power plants by corrective treatment with hydrogen peroxide followed by heating. It proposes a method of determining the type and concentration of surfactants in aqueous solutions based on the method of high-performance liquid chromatography in tandem with mass spectrometry (HPLC-MS). The dependences of the purification efficiency of the solution on the initial concentration of surfactants, time and temperature as well as on the presence of an additional contaminant (potassium permanganate) are investigated. It is shown that in order to meet the requirements of regulatory documents with a conservative approach the efficiency of surfactant purification should be at least 81% when evaporating the cubic residue before cementing to 150 g/l and at least 95 % when evaporating to 450 g/l. Decomposition of complexing agents is shown to occur during processing in the temperature range of 80-100 degrees Celsius when hydrogen peroxide is dosed into aqueous solutions. The surfactant concentration reaches a value of 62 % at temperatures of 80 C and above which corresponds to the surfactant content in the cube residue not exceeding the value of 1 % (without conservative approach) after 4 hours of treatment. Dosing of potassium permanganate into the purified water allows to achieve virtually 100% purification from surfactants, without resorting to heating the water to boiling point. The efficiency of purification from surfactants to the level of complexing substances in the cubic residue in the range below 1 % is achieved by dosing potassium permanganate 70 minutes after the start of the experiment, and when heated to 100 C – in less than 40 minutes. The results obtained can be used to substantiate the safety of radioactive waste management technologies used in nuclear energy.
Keywords
About the Authors
V. P. PovarovRussian Federation
Dr. Sci. (Engin.), Head
S. V. Rosnovskiy
Russian Federation
Can. Sci. (Engin.), Deputy Chief Engineer for Radiation Protection
E. S. Melnikov
Russian Federation
Head of the Radioactive Waste Management Department
M. N. Litovchenko
Russian Federation
Lead engineer of the Radioactive Waste Management Department
M. N. Rosnovsky
Russian Federation
Reactor shop operator
E. L. Gordeeva
Russian Federation
General Principal
A. N. Kharin
Russian Federation
Can. Sci (Phys. and Math.), Head of the Department of Innovation and Entrepreneurship
H. S. Shikhaliev
Russian Federation
Dr. Sci. (Chem.), Professor, Head of the Department of Organic Chemistry
M. A. Potapov
Russian Federation
Can. Sci. (Chem.), Researcher at the Department of Organic Chemistry
References
1. Хазиева Э.Б., Набойченко С.С., Свиридов. Исследование возможности применения комбинированных ПАВ при автоклавном выщелачивании сульфидных цинковых концентратов. Вестник Иркутского государственного технического университета. 2016;20(9):147–155. https://doi.org/10.21285/1814-3520-2016-9-147-155
2. Колмачихина Э.Б., Рыжкова Е.А., Дмитриева Д.В., Вакула К.А., Мокрецов М.А. Исследование влияния лигносульфоната, анионных поверхностно-активных веществ и их смесей на показатели автоклавного выщелачивания цинкового концентрата. Вестник Иркутского государственного технического университа. 2018;22(8):143–150. https://doi.org/10.21285/1814-3520-2018-8-143-150
3. Jungling T. Nuclear Regulatory Commission. Regulations and Experience with Solidification. Stabilization Technology. T. Jungling, J. Greeves. American Society for testing and materials. Philadelphia. 1989. P. 77-82. https://www.astm.org/stp22871s.html
4. Батраков В.Г. Модифицированные бетоны. Москва: Стройиздат, 1990. 394 с. Режим доступа: https://search.rsl.ru/ru/record/01001526240 (дата обращения: 01.09.2024).
5. Гафарова В.В., Кулагина Т.А. Безопасные методы утилизации радиоактивных отходов. Журнал Сибирского Федерального университета. Серия: техника и технологии. 2016;9(4):585–597. https://doi.org/10.17516/1999-494X-2016-9-4-585-597
6. Трунова Н.А. Влияние природы поверхностно-активных веществ на распад гидропероксидов в коллоидных системах. Автореферат диссертации на соискание степени кандидата химических наук. Москва, 2009. 22 с. Режим доступа: https://search.rsl.ru/ru/record/01003463764?ysclid=m472l587j1240988353
7. Мубаракова Л.Р., Будников Г.К. Хроматографические методы в анализе продуктов бытовой химии и косметических средств на содержание ПАВ. Заводская лаборатория. Диагностика материалов. 2018;84(5):5–13. https://doi.org/10.26896/1028-6861-2018-84-5-5-13
8. Lara-Martín P.A., Gómez-Parra A., González-Mazo E. Development of a method for the simultaneous analysis of anionic and non-ionic surfactants and their carboxylated metabolites in environmental samples by mixed-mode liquid chromatography-mass spectrometry. Journal of Chromatography A. 2006;1137(2):188–197. https://doi.org/10.1016/j.chroma.2006.10.009
9. Bassarab P., Williams D., Dean J.R., Perry J.J. Determination of quaternary ammonium compounds in seawater samples by solid-phase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography A. 2011;1218(5):673–677. https://doi.org/10.1016/j.chroma.2010.11.088
10. León V.M., González-Mazo E., Gómez-Parra A. Handling of marine and estuarine samples for the determination of linear alkylbenzene sulfonates and sulfophenylcarboxylic acids. Journal of Chromatography A. 2000;889(1–2):211–219. https://doi.org/10.1016/S0021-9673(00)00569-0
11. Merino F., Rubio S., Pérez-Bendito D. Evaluation and optimization of an on-line admicelle-based extraction-liquid chromatography approach for the analysis of ionic organic compounds. Analytical Chemistry. 2004;76(14):3878–3886. https://doi.org/10.1021/AC049736V
12. Лобачев А.Л., Колотвин А.А. Идентификация и количественное определение приоритетных анионных поверхностно-активных веществ в моющих средствах методами ТСХ и ВЭЖХ. Сорбционные и хроматографические процессы. 2006;6(1):90–98. Режим доступа: https://elibrary.ru/item.asp?id=12051627&ysclid=m472xl12q
13. (дата обращения: 01.09.2024).
14. Lara-Martín P.A. Gómez-Parra A., González-Mazo E. Simultaneous extraction and determination of anionic surfactants in waters and sediments. Journal of Chromatography A. 2006;1114(2):205–210 https://doi.org/10.1016/j.chroma.2006.03.014
15. Pan N., Pietrzyk D.J. Separation of anionic surfactants on anion exchangers. Journal of Chromatography A. 1995;706(1–2):327–337. (In Russ.). Available at: https://archive.org/details/sim_journal-of-chromatography-a_1995_706_index_0 (accessed: 01.09.2024).
16. Murakami M., Takada H. Perfluorinated surfactants (PFSs) in size-fractionated street dust in Tokyo. Chemsphere. 2008;73(8):1172–1177. https://doi.org/10.1016/j.chemosphere.2008.07.063
17. Амелин В.Г. Большаков Д.С. Идентификация и определение неионогенных поверхностно-активных веществ методом ультра высокоэффективной жидкостной хроматографии-масс-спектрометрии высокого разрешения. Журнал органической химии. 2021;76(2):166–182. https://doi.org/10.31857/S0044450220120026
Review
For citations:
Povarov V.P., Rosnovskiy S.V., Melnikov E.S., Litovchenko M.N., Rosnovsky M.N., Gordeeva E.L., Kharin A.N., Shikhaliev H.S., Potapov M.A. Investigation of the impact of the physical and chemical factors during correction treatment of NPP unbalance water to ensure compliance of conditioned radioactive waste with regulatory requirements. Nuclear Safety. 2024;14(4):5-18. (In Russ.) https://doi.org/10.26583/gns-2024-04-01. EDN: FNSFJI