Preview

Nuclear Safety

Advanced search

Numerical neutron emission spectrometry and radiation of VVER-1200 reactor fuel

https://doi.org/10.26583/gns-2025-01-01

EDN: FEMEZE

Abstract

 

Abstract. The VVER-1200 (V-491) reactor is a water-cooled power reactor, the design of which provides for higher fuel and coolant operating parameters compared to the VVER-1000 (V-320) reactor. For long-term and trouble-free operation of the reactor, the fuel is modified by adding various homogeneous compounds and heterogeneous inclusions. Uranium-gadolinium fuel in a homogeneous design with axial profiling of fuel elements has received practical application. The possibility of heterogeneous use of Gd2O3, ZrB2, Am2O3 and other burnable and alloying additives is being investigated. Such additives make it possible to maintain the thermal conductivity of the fuel at the level of conventional oxide fuel. The studied modifications show satisfactory behavior under irradiation at extremely high temperatures and burnup. However, the issues of radiation safety when handling both fresh and spent fuel remain less studied. In this work, a computational assessment of the neutron component of the radiation characteristics of a UO2 composition with a heterogeneous variant of the localization of natGd2O3 and Am2O3 microcapsules was carried out. This design option does not impair the thermal conductivity of the fuel and has a positive effect on the nuclear physical and thermophysical properties of the fuel. Americium has been studied not only as a possible alternative to Gd, but also from the perspective of its possible utilization in thermal reactors. The influence of Am on the photon component of the radiation characteristics of fresh fuel is considered. It is concluded that the radiation safety of fresh and irradiated products containing Am should be achieved primarily by solving problems of protection from photon radiation. The research is carried out to develop procedures and regulations for handling new fuel during its manufacture and after irradiation in the reactor. The studies were carried out using verified calculation codes of the MCNP 6.2 and Nedis 2m programs.

About the Authors

S. D. Polozkov
National Research Tomsk Polytechnic University; Novovoronezh Nuclear Power Plant – a branch of Rosenergoatom Concern JSC
Russian Federation

postgraduate student;

engineer of nuclear safety and reliability department



G. N. Vlaskin
ITCP «Proryv»
Russian Federation

researcher at the science department



S. V. Bedenko
National Research Tomsk Polytechnic University
Russian Federation

associate Professor, a School ofNuclear Science and Engineering



References

1. Minato K., Shiratori T., Serizawa H., Hayashi K. et al. Thermal conductivities of irradiated UO2 and (U,Gd)O2. Journal of nuclear materials. 2001;288(1):57–65. https://doi.org/10.1016/S0022-3115(00)00578-X

2. Shelley A., Ovi M.H. Use of americium as a burnable absorber for VVER-1200 reactor. Nuclear engineering and technology. 2021;53(8):2454–2463. https://doi.org/10.1016/j.net.2021.02.024

3. Панов В.С., Лопатин В.Ю., Мякишева О.В., Еремеева Ж.В. и др. Оценка использования модифицирущих добавок для повышения производительности ядерного топлива в реакторе. Известия Юго-Западного государственного университета. 2017;21(2):48–59; https://doi.org/10.21869/2223-1560-2017-21-2-48-59

4. Карпюк Л.А., Савченко А.М., Коновалов Ю.В., Кулаков Г.В. и др. Особенности поведения дисперсионного топлива МЕТМЕТ под облучением. Вопросы материаловедения. 2022;3(111):148–155. https://doi.org/10.22349/1994-6716-2022-111-3-148-155

5. Tran H-M. et al. Neutronics design of VVER-1000 fuel assembly with burnable poison particles. Nuclear engineering and technology. 2019;51(7):1729–1737. https://doi.org/10.1016/j.net.2019.05.026

6. Al’davakhra S., Savander V.I., Belousov I.N. Computational method for and analysis of the application of granular absorbers in VVÉR reactors. Atomic energy. 2006;100:8–13. https://doi.org/10.1007/s10512-006-0042-3

7. Андрианов А.Н., Баранов В.Г., Годин Ю.Г. Круглов В.А., Тенишев А.В. Влияние нестехиометрии и легирования на теплопроводность диоксида урана. Перспективные материалы. 2003;6:43–49. Режим доступа: https://elibrary.ru/item.asp?id=21260464 (дата обращения: 11.11.2024).

8. Баранов В.Г., Покровский С.А., Тенишев А.В., Хлунов А.В. Михеев Е.Н., Федотов А.В. Теплофизические свойства модифицированного оксидного ядерного топлива. Атомная энергия. 2011;110(1):36–40. Режим доступа: https://j-atomicenergy.ru/index.php/ae/article/download/1988/1968 (дата обращения: 11.11.2024).

9. Музафаров А.Р., Савандер В.И. Использование выгорающих поглотителей в реакторах типа ВВЭР для снижения доли запаса реактивности, компенсируемого жидкостной системой при удлиненных кампаниях. Глобальная ядерная безопасность. 2022;2(43):42–54. https://doi.org/10.26583/gns-2022-02-05

10. Hoai-Nam Tran, et al. Feasibility of using Gd2O3 particles in VVER-1000 fuel assembly for controlling excess reactivity. Energy Procedia. 2017;131:29–36. https://doi.org/10.1016/j.egypro.2017.09.442

11. Iwasaki K., Matsui T., Yanai K., Yuda R. et al. Effect of Gd2O3 Dispersion on the Thermal Conductivity of UO2. Nuclear science and technology. 2009;46(7):673–676; https://doi.org/10.1080/18811248.2007.9711574

12. Внуков Р.А., Колесов В.В., Жаворонкова И.А., Котов Я.А., Праманик М.М. Влияние размещения выгорающего поглотителя на нейтронно-физические характеристики тепловыделяющей сборки ВВЭР-1200. Известия вузов. Ядерная энергетика. 2021;2:27–37. https://doi.org/10.26583/npe.2021.2.03

13. Карпеева А.Е., Колосовский В.Г., Пахомов Д.С., Скомороха А.Е., Тимошин И.С. Способ оптимизации термической стабильности уран-гадолиниевого топлива. Известия вузов. Ядерная энергетика. 2021;3:97–106. https://doi.org/10.26583/npe.2021.3.08

14. Vlaskin G.N., Khomyakov Y.S. (α, n) Neutron spectra on thick light target. Atomic energy. 2021;130:104–118. https://doi.org/10.1007/s10512-021-00781-0

15. Vlaskin G.N., Khomyakov Y.S. Calculation of Neutron Production Rates and Spectra from Compounds of Actinides and Light Elements. The European Physical journal conferences. 2017;153(5):07033; https://doi.org/10.1051/epjconf/201715307033

16. Vlaskin G.N., Khomyakov Y.S, Bulanenko V.I. Neutron yield of the reaction (α, n) on thick targets comprised of light elements. Atomic energy. 2015;117:357–365. https://doi.org/10.1007/s10512-015-9933-5

17. Власкин Г.Н., Чванкин Е.В., Даренских О.Г., Дзекун Е.Г., Маркин Е.Г. Контроль выгорания топлива по собственному нейтронному излучению отработавших ТВС. Атомная энергия. 1993;74(5):437–438. Режим доступа: https://elib.biblioatom.ru/text/atomnaya-energiya_t74-5_1993/p437/ (дата обращения: 11.11.2024).

18. Власкин Г.Н., Матвеев Л.В., Рогожкин В.Ю., Сидоренко В.Д. Нейтронное излучение отработавшего топлива ВВЭР-1000. Атомная энергетика. 1989;67(3):219–220. Режим доступа: https://elib.biblioatom.ru/

19. text/atomnaya-energiya_t67-3_1989/p219/ (дата обращения: 11.11.2024).

20. Шаманин И.В., Буланенко В.И., Беденко С.В. Neutron radiation field of irradiated ceramic nuclear fuel of various types. Известия вузов. Ядерная энергетика. 2010;2:97–103. Режим доступа: https://elibrary.ru/item.asp?id=14933427 (дата обращения: 11.11.2024).

21. Bedenko S, Shamanin I, Grachev V, Knyshev V, Ukrainets O, Zorkin A. Neutron radiation characteristics of the IVth generation reactor spent fuel. AIP Conference proceedings. 2018;1938(1):020001. https://doi.org/10.1063/1.5027208

22. Шаманин И.В., Беденко С.В., Павлюк А.О., Лызко В.А. Использование программы Origen-Arp при расчете изотопного состава отработанного топлива реактора ВВЭР-1000. Известия томского политехнического университета. 2010;317(4):25–28. Режим доступа: https://earchive.tpu.ru/bitstream/11683/3408/1/bulletin_tpu-2010-317-4-05.pdf (дата обращения: 11.11.2024).

23. Plevaka M.N., Bedenko S.V., Gubaidulin I.M., Knyshev V.V. Neutron-physical studies of dry storage systems of promising fuel compositions. Bulletin of the Lebedev Physics institute. 2015;42:240–243. https://doi.org/10.3103/S1068335615080059

24. Шаманин И.В., Беденко С.В., Нестеров В.Н., Луцик И.О., Прец А.А. Решение системы многогрупповых уравнений переноса нейтронов в подкритических системах. Известия вузов. Ядерная энергетика. 2017;2017(4):38–49. https://doi.org/10.26583/npe.2017.4.04

25. Vlaskin G.N., Bedenko S.V., Ghal-Eh N., Vega-Carrillo H.R. Neutron yield and energy spectrum of 13C(alpha,n)16O reaction in liquid scintillator of KamLAND: A Nedis-2m simulation. Nuclear engineering and technology. 2021;53(12):4067–4071. https://doi.org/10.1016/j.net.2021.06.023

26. Писарев А.Н., Колесов В.В. Исследование переноса неопределенностей в ядерных данных на ядерные концентрации нуклидов в расчетах выгорания. Известия вузов. Ядерная энергетика. 2020;2:108–121. https://doi.org/10.26583/npe.2020.2.10


Review

For citations:


Polozkov S.D., Vlaskin G.N., Bedenko S.V. Numerical neutron emission spectrometry and radiation of VVER-1200 reactor fuel. Nuclear Safety. 2025;15(1):5-16. (In Russ.) https://doi.org/10.26583/gns-2025-01-01. EDN: FEMEZE

Views: 211


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-414X (Print)
ISSN 2499-9733 (Online)