Preview

Nuclear Safety

Advanced search

Gradient method of structural heterogeneity identification in electrical inspection of equipment, products and materials

https://doi.org/10.26583/gns-2024-04-04

EDN: QWREXO

Abstract

A gradient method of structural inhomogeneities identification in the objects of industrial equipment and products control based on the analysis of electric potential distribution inside a single reflex is developed. The computational and graphic method is applied to analyze the results of electrical control of NPP equipment during its manufacture. The research objective under consideration is to determine the degree of reproducibility of electrical inspection results and to develop for this purpose a universal digital identifier of structural inhomogeneities. Single reflexes are characterized by internal pressure and distribution of electric potential, which has a gradient. Single reflexes on potentiograms are isolated by electrophysical chromatography with the help of double amplitude discrimination using developed program codes. The emergence of potential distribution patterns on the surface of the controlled product is associated with the presence of inhomogeneous fields of internal stresses and deformations in it. To determine the local value of internal pressure in structural inhomogeneities, the value of energy density was estimated. This estimation for single reflexes is obtained using the value of electron density in metals and alloys. The magnitude of the gradient corresponds to the electric field strength around the reflex. On the surface, a single reflex represents a figure of concentric hexagons or other geometric figures. In the volumetric image, the reflex has the form of a pyramid with a certain figure at its base. The hexagonal shape of the reflex is associated with a quasi-equilibrium distribution of normal and tangential stresses around the point heterogeneity. The value of internal pressure in steels for the fixation level in the interval (0≤ SLS <1) is close to the strength limit, for the interval of negative values (-0,7 ≤ SLS < -0,4) – to the yield strength.

About the Authors

V. I. Surin
National Research Nuclear University «MEPhI»
Russian Federation

Cand. Sci. (Eng.), Head of Functional Electrophysical Diagnostics and Non-Destructive Testing Laboratory, Institute of Nuclear Physics and Technology (INPhT)



M. V. Ivanyi
National Research Nuclear University «MEPhI»
Russian Federation

Cand. Sci. (Eng.), Associate Professor



A. A. Shcherbakov
National Research Nuclear University «MEPhI»
Russian Federation

senior lecturer



A. A. Shcherban
«Atommash» the branch of «AEM-technologies» JSC
Russian Federation

Head of Non-Destructive Testing Department



A. V. Pavlichenko
«Atommash» the branch of «AEM-technologies» JSC
Russian Federation

category I flaw detection engineer of the department of non-destructive methods of unit quality control



S. A. Tomilin
Volgodonsk Engineering Technical Institute the branch of National Research Nuclear University «MEPhI»
Russian Federation

Cand. Sci. (Eng.), Head and Associate Professor Department of Mechanical Engineering and Applied Mechanics



M. E. Zhidkov
«Atommash» the branch of «AEM-technologies» JSC
Russian Federation

Head



A. E. Goоk
«Atommash» the branch of «AEM-technologies» JSC
Russian Federation

Head of the Professional Competence Center of the Personnel Management Unit



References

1. Ландау Л.Д., Лифшиц Е.М. Теория поля. Москва: Наука, 1988. 512 c. Режим доступа: https://djvu.online/file/7yKdiaQMEUkVZ?ysclid=m1ozwi9qqu4986992 (дата обращения: 10.09.2024).

2. Сурин В.И., Иваний М.Б., Волкова З.С., Щербаков А.А. Конструирование приборов и установок электрического неразрушающего контроля. Часть 1. Теоретические основы контактной потенциометрии. Москва: НИЯУ МИФИ, 2024. Режим доступа: https://www.elibrary.ru/item.asp?edn=iknlas (дата обращения: 07.09.2024).

3. Сурин В.И., Польский В.И., Осинцев А.В., Джумаев П.С. Применение метода сканирующей контактной потенциометрии для регистрации образования зародышевой трещины в сталях. Дефектоскопия. 2019;1:53–60. Режим доступа: https://www.elibrary.ru/item.asp?id=37057859 (дата обращения: 07.09.2024).

4. Hohenberg P., Kohn W. Inhomogeneous electron gas. Physical Review. 1964;136:B864–B871. https://doi.org/10.1103/PhysRev.136.B864

5. Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects. Physical Review. 1965;140:A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

6. Kohn W., Lang N.D., Lundqvist S., March N.H., Vashishta P., Bart U., Williams A.R. Theory of the inhomogeneous electron gas. New York: Plenum Press, 1983. Available at: https://archive.org/details/theoryofinhomoge0000unse/page/n7/mode/2up (accessed 05.09.2024).

7. Kittel Ch. Introduction to solid state physics. 8th ed. New Jersey: John Wiley & Sons, 2005. Available at: http://metal.elte.hu/~groma/Anyagtudomany/kittel.pdf (accessed: 10.09.2024).

8. Баранов В.М., Евстюхин Н.А., Сурин В.И. К теории ЭДС, наведенной деформацией металлов и сплавов. Сборник научных трудов. Научная сессия МИФИ-2003. 2003;9:122–124. Режим доступа: http://library.mephi.ru/data/scientific-sessions/2003/9/122.html (дата обращения: 07.09.2024).

9. Alwaheba A.I., Surin V.I., Ivanova T.E., Ivanov O.V., Beketov V.G., Goshkoderov V.A. Detection of defects in а welded joint by scanning contact potentiometry. Nondestructive testing and evaluation. 2021;36(3):261–277. https://doi.org/10.1080/10589759.2020.1740702

10. Surin V.I., Alwaheba A.I., Beketov V.G., Abu Gazal A.A. Alternative method of non-destructive testing for nuclear power plant. International conference on physics of reactors: Transition to a scalable nuclear future. PHYSOR 2020. EPJ Web of Conferences. 2021;247:11002. https://doi.org/10.1051/epjconf/202124711002

11. Щербань А.С., Михайлевский Д.А., Павличенко А.В., Томилин С.А. Технологические особенности ультразвукового контроля сварных соединений из стали аустенитного класса марки 10Х15Н9С361-Ш (ЭП302-Ш). Современные технологии и автоматизация в технике, управлении и образовании: сборник трудов VI Международной научно-практической конференции. Том 1. Балаково, 2024. С. 194–201. Режим доступа: https://biti.mephi.ru/wp-content/uploads/2024/07/ТОМ-I.pdf (дата обращения: : 07.09.2024).

12. Сурин В.И., Щербань А.С., Щербаков А.А., Иваний М.Б., Жидков М.Е., Томилин С.А., Козлов А.В. Представление результатов электрического контроля методом электрофизической хроматографии. Глобальная ядерная безопасность. 2023;2(47):39–49. EDN: TFDGAT. https://doi.org/10.26583/gns-2023-02-05

13. Сурин В.И., Щербань А.С., Щербаков А.А., Жидков М.Е., Томилин С.А., Иваний М.Б. Обоснование применимости метода сканирующей контактной потенциометрии для контроля оборудования АЭС при его изготовлении. Глобальная ядерная безопасность. 2023;13(1):36–53. https://doi.org/10.26583/gns-2023-01-04


Review

For citations:


Surin V.I., Ivanyi M.V., Shcherbakov A.A., Shcherban A.A., Pavlichenko A.V., Tomilin S.A., Zhidkov M.E., Goоk A.E. Gradient method of structural heterogeneity identification in electrical inspection of equipment, products and materials. Nuclear Safety. 2024;14(4):34-41. (In Russ.) https://doi.org/10.26583/gns-2024-04-04. EDN: QWREXO

Views: 68


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-414X (Print)
ISSN 2499-9733 (Online)