Preview

Nuclear Safety

Advanced search

Simulation results of dry deposition of radioactive aerosols in the Arctic regions of the Far North

https://doi.org/10.26583/gns-2025-01-02

EDN: KRCFHR

Abstract

Modeling of dry deposition of radioactive aerosols in the Arctic regions of the Far North is presented using a model of dry deposition of aerosols on heterogeneous underlying surfaces, which takes into account the influence of the size and density of aerosol particles, surface roughness characteristics and dynamic friction velocity, determined based on parameterization of the boundary and surface layers in the used version of the WRF-ARW model. Estimates of contamination of the earth's surface with radioactive aerosols with particle sizes of 0.1, 1 and 10 microns in the Arctic regions of the Far North (territories of Yamal Peninsula and Kola Peninsula) with heterogeneous underlying surfaces under real meteorological conditions in summer and winter periods have been obtained. It is shown that contamination of the earth's surface with radioactive aerosols in the Yamal and Kola Peninsulas depends on the size of aerosol particles and the types of the underlying surface in summer and winter. The greatest heterogeneity of contamination of the territory and its dependence on the type of underlying surface is observed for particles less than 1 micron, and for large particles, the determining factors are the terrain and meteorological conditions at the time of release. The results of numerical modeling will reduce the uncertainty of estimates of contamination of the area with radioactive aerosols and increase their reliability in the interests of analyzing and ensuring public safety, including the environmental impact of radioactive aerosols generated at nuclear energy facilities that are operated and will be used in the Arctic regions of the Far North.

About the Authors

D. A. Pripachkin
National Research Nuclear University «MEPhI»
Russian Federation

Dr. Sci. (Phys. and Math), head of department



I. D. Sadofev
National Research Nuclear University «MEPhI»
Russian Federation

engineer



References

1. Seinfeld J.H., Pandis S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley. 2016. 152 р. https://www.wiley.com/en-us/Atmospheric+Chemistry+and+Physics%3A+From+Air+Pollution+to+Climate+Change%2C+3rd+Edition-p-9781118947401.

2. Гусев Н.Г., Беляев В.А. Радиоактивные выбросы в биосфере: справочник. Москва: Энергоатомиздат, 1991. 256 с. Режим доступа: https://search.rsl.ru/ru/record/01001609468?ysclid=m7xi6gmxfp339437018 (дата обращения: 09.01.2025).

3. AERMOD: description of model formulation. EPA-454/R-03-004. 2004. Available at: https://elsmar.com/pdf_files/EPA%20aermod_mfd.pdf (accessed: 10.01.2025).

4. Korsakissok I., Mathieu A., Didier D. Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: A local-scale simulation and sensitivity study. Atmospheric Environment 70 (2013), 267-279. https://doi.org/10.1016/j.atmosenv.2013.01.002

5. Рекомендуемые методы оценки и прогнозирования радиационных последствий аварий на объектах ядерного топливного цикла. Руководство по безопасности при использовании атомной энергии. Москва: «НТЦ ЯРБ», 2017. 40 с. Режим доступа: https://docs.cntd.ru/document/555856678?section=status (дата обращения: 09.01.2025).

6. Губеладзе О.А., Губеладзе А.Р. Заражение местности вследствие сухого оседания и вымывания осадками продуктов выброса из точечного источника. Глобальная ядерная безопасность. 2023;(1):14–22. https://doi.org/10.26583/gns-2023-01-02

7. Gubeladze O.A., Gubeladze A.R. Area contamination due to dry settling and point source stack effluents washout by precipitates. Global nuclear safety. 2023;(1):14–22. (In Russ.) https://doi.org/10.26583/gns-2023-01-02

8. Припачкин Д.А., Высоцкий В.Л., Будыка А.К. Влияние условий моделирования на оценку скорости сухого осаждения аэрозольных частиц на сильно неоднородные подстилающие поверхности. Известия Российской академии наук. Физика атмосферы и океана. 2024;60(2):173–182. https://doi.org/10.31857/S0002351524020048

9. Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O. et al. Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR. 2008. 520 p. https://doi.org/10.13140/RG.2.1.2310.6645

10. Арутюнян Р.В., Припачкин Д.А., Сороковикова О.С., Семенов В.Н. и др. Система ПАРРАД и ее испытания на реальных выбросах радиоактивных веществ в атмосферу. Атомная энергия. 2016;121(3):169–173. Режим доступа: https://www.j-atomicenergy.ru/index.php/ae/article/view/448/440 (дата обращения: 10.01.2025).


Review

For citations:


Pripachkin D.A., Sadofev I.D. Simulation results of dry deposition of radioactive aerosols in the Arctic regions of the Far North. Nuclear Safety. 2025;15(1):17-23. (In Russ.) https://doi.org/10.26583/gns-2025-01-02. EDN: KRCFHR

Views: 98


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-414X (Print)
ISSN 2499-9733 (Online)