Robotic system for performing chemical synthesis with analysis of products
https://doi.org/10.26583/gns-2025-04-02
EDN: RWUQOK
Abstract
Keywords
About the Authors
N. Yu. SerovRussian Federation
Cand. Sci(Chem), Leading Researcher of the Laboratory of automated biochemical technologies of the Department of Advanced Research; Associate Professor, Department of Inorganic Chemistry
M. Sh. Adygamov
Russian Federation
Junior Researcher, Laboratory of automated biochemical technologies; Postgraduate student
A. O. Golub
Russian Federation
Master's student, Chemoinformatics and Molecular Modeling program
T. R. Gimadiev
Russian Federation
PhD. Sci(Chem), Senior Researcher, Laboratory of automated biochemical technologies, Department of Advanced Research; Associate Professor, Department of Organic Chemistry
References
1. Vasquez J., Twigg-Smith H., Tran O’Leary J., Peek N. Jubilee: An Extensible Machine for Multi-tool Fabrication. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems CHI ’20: CHI Conference on Hu-man Factors in Computing Systems. Honolulu HI USA: ACM, 2020. P. 1–13. https://dl.acm.org/doi/10.1145/3313831.3376425
2. Saugbjerg J.R., Jensen T.B., Hinge M., Henriksen M.L. A modular low-cost automated synthesis machine demonstrated by ring-opening metathesis polymerization. Reaction Chemistry & Engineering. 2023;8(11):2866–2875. https://doi.org/10.1039/D3RE00345K
3. Godfrey A.G., Masquelin T., Hemmerle H. A remote-controlled adaptive medchem lab: an innovative approach to enable drug discovery in the 21st Century. Drug discovery today. 2013;18:795–802. https://doi.org/10.1016/j.drudis.2013.03.001
4. Li J., Lu Y., Xu Y., Liu C. et al. AIR-Chem: Authentic Intelligent Robotics for Chemistry. Journal of physical chemistry A. 2018;122(46);9142–9148. https://doi.org/10.1021/acs.jpca.8b10680
5. Meshkov A.V., Yurova V.Yu., Aliev T.A., Potapov V.V. et al. Collaborative robots using computer vision appli-cations in a chemical laboratory. Mendeleev communications. 2024;34(6):769–773. https://doi.org/10.1016/j.mencom.2024.10.001
6. Lim J.X.Y., Leow D., Pham Q.C., Tan C.H. Development of a Robotic System for Automatic Organic Chemistry Synthesis. IEEE Transactions on automation science and engineering. 2021;18(4):2185–2190. https://doi.org/10.1109/TASE.2020.3036055
7. Zhu Q., Huang Y., Zhou D., Zhao L. et al. Automated synthesis of oxygen-producing catalysts from Martian me-teorites by a robotic AI chemist. Nature synthesis. 2023;3(3):319–328. https://doi.org/10.1038/s44160-023-00424-1
8. Martin K.N., Rubsamen M.S., Kaplan N.P., Hendricks M.P. Method for interfacing a plate reader spectrometer di-rectly with an OT-2 liquid handling robot. ChemRxiv. Preprint. 2022. https://doi.org/10.26434/chemrxiv-2022-6z4q1
9. Lee E.C., Salley D., Sharma A., Cronin L. AI-Driven Robotic Crystal Explorer for Rapid Polymorph Identifica-tion. Cornell University arXiv:2409.05196. 2024. https://doi.org/10.48550/arXiv.2409.05196
10. Burger B., Maffettone P.M., Gusev V.V., Aitchison C.M. et al. A mobile robotic chemist. Nature. 2020;583(7815):237–241. https://doi.org/10.1038/s41586-020-2442-2
11. Dai T., Vijayakrishnan S., Szczypiński F.T., Ayme J.-F. et al. Autonomous mobile robots for exploratory synthet-ic chemistry. Nature. 2024;635(8040):890–897. https://doi.org/10.1038/s41586-024-08173-7
12. Dragone V., Sans V., Rosnes M.H., Kitson P.J., Cronin L. 3D-printed devices for continuous-flow organic chemis-try. Beilstein journal of organic chemistry. 2013;9:951–959. https://doi.org/10.3762/bjoc.9.109
13. Chisholm G., Kitson P.J., Kirkaldy N.D., Bloor L.G., Cronin L. 3D printed flow plates for the electrolysis of wa-ter: an economic and adaptable approach to device manufacture. Energy & environmental science. 2014;7(9):3026–3032. https://doi.org/10.1039/C4EE01426J
14. Steiner S., Wolf J., Glatzel S., Andreou A. et al. Organic synthesis in a modular robotic system driven by a chem-ical programming language. Science. 2019;363(6423):eaav2211. https://doi.org/10.1126/science.aav2211
15. Bédard A.-C., Adamo A., Aroh K.C., Russel M.G. et al. Reconfigurable system for automated optimization of di-verse chemical reactions. Science. 2018;361(6408):1220–1125. https://www.science.org/doi/10.1126/science.aat0650
16. Coley C.W., Thomas D.A., Lummiss J.A.M., Jaworski J.N. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science. 2019;365(6453) https://doi.org/10.1126/science.aax1566
17. Koscher B.A., Canty R.B., McDonald M.A., Greenman K.P. et al. Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back. Science. 2023;382(6677). https://doi.org/10.1126/science.adi1407
18. Adamo A., Beingessner R.L., Behnam M., Chen J. et al. On-demand continuous-flow production of pharmaceu-ticals in a compact, reconfigurable system. Science. 2016;352(6281):61–67. https://doi.org/10.1126/science.aaf1337
19. Meshkov A.V., Nikitina A.A., Aliev T.A., Gromov V.S. Robotization of Synthesis and Analysis Process of Gra-phene Oxide-Based Membrane. Advanced intelligent systems. 2024;6(5):2300655. https://doi.org/10.1002/aisy.202300655
20. Rial‐Rodríguez E., Williams J.D., Cantillo D., Fuchb T. et al. An Automated Electrochemical Flow Platform to Accelerate Library Synthesis and Reaction Optimization. Angewandte chemie. 2024;136(51):e202412045. https://doi.org/10.1002/ange.202412045
21. Jensen T.B., Saugbjerg J.R., Henriksen M.L., Quinson J. Towards the automation of nanoparticle syntheses: The case study of gold nanoparticles obtained at room temperature. Colloids and surfaces A: Physicochemical and engi-neering aspects. 2024;702(2):135125. https://doi.org/10.1016/j.colsurfa.2024.135125
22. Serov N.Yu., Shtyrlin V.G., Khayarov Kh.R. The kinetics and mechanisms of reactions in the flow systems gly-cine–sodium trimetaphosphate–imidazoles: the crucial role of imidazoles in prebiotic peptide syntheses. Amino Acids. 2020;52:811–821. https://doi.org/10.1007/s00726-020-02854-z
Review
For citations:
Serov N.Yu., Adygamov M.Sh., Golub A.O., Gimadiev T.R. Robotic system for performing chemical synthesis with analysis of products. Nuclear Safety. 2025;15(4):19-29. (In Russ.) https://doi.org/10.26583/gns-2025-04-02. EDN: RWUQOK
























