Comparative Study of Spectral Regulation Range of Excess Reactivity Control in Pressurized Water Reactors Using Zirconium Displacers for Uranium and Thorium Fuel Cycles
https://doi.org/10.26583/gns-2021-02-06
Abstract
About the Authors
A. I. ElazakaRussian Federation
V. I. Savander
Russian Federation
G. V. Tikhomirov
Russian Federation
References
1. Campolina D. et al. Parametric Study of Enriched Gadolinium in Burnable Neutron Poison Fuel Rods for Angra-2 // Ann. Nucl. Energy. Elsevier Ltd, 2018. Vol. 118. P. 375-380.
2. Fadaei A.H. Investigation of Burnable Poisons Effects in Reactor Core Design // Ann. Nucl. Energy. 2011.
3. Frybortova L. Recommended Strategy and Limitations of Burnable Absorbers Used in WWER Fuel Assemblies // Nucl. Sci. Tech. 2019. Vol. 30, № 8.
4. Galahom A.A. Study of Possibility of Using Europium and Pyrex Alloy as Burnable Absorber in PWR // Ann. Nucl. Energy. 2017. Vol. 110.
5. Galahom A.A. Investigation of Different Burnable Absorbers Effects on the Neutronic Characteristics of PWR Assembly // Ann. Nucl. Energy. Elsevier Ltd, 2016. Vol. 94. P. 22-31.
6. Safarzadeh O., Saadatian-Derakhshandeh F., Shirani A.S. Calculation of Reactivity Coefficients with Burnup Changes for WWER-1000 Reactor // Prog. Nucl. Energy. 2015.
7. Parisi C., Negrenti E., Pecchia M. B&W Spectral Shift Control Reactor Lattice Experiments: Evaluation of Core I and Core VIII // Nucl. Sci. Eng. 2014. Vol. 178, № 4.
8. Chibinyaev A. V., Alekseev P.N., Teplov P.S. Estimation of the Effect of Neutron Spectrum Regulation on WWÉR-1000 Fuel Burnup // At. Energy. 2006. Vol. 101, № 3. P. 680-683.
9. Teplov P. et al. The Main Characteristics of the the WWER-S with Spectrum Shift Regulation. 2015.
10. Elazaka A.I., Tikhomirov G. V. Potential of the WWER Reactor Spectral Regulation with Regard for Fuel Burnup// Izv. Wysshikh Uchebnykh Zawedeniy, Yad. Energ. 2020. Vol. 2020, № 2.
11. Elazaka A.I., Tikhomirov G.V., Abdelghafar Galahom A. Study the Neutronic Feasibility of Using Zr as an Energy Regulator Instead of Traditional Methods // Int. J. Energy Res. 2021.
12. Akbari-Jeyhouni R. et al. The Utilization of Thorium in Small Modular Reactors - Part I: Neutronic assessment // Ann. Nucl. Energy. 2018. Vol. 120.
13. Castro V.F., Velasquez C.E., Pereira C. Criticality and Depletion Analysis of Reprocessed Fuel Spiked with Thorium in a PWR Core // Nucl. Eng. Des. 2020. Vol. 360.
14. Cui D.Y. et al. Possible Scenarios for the Transition to Thorium Fuel Cycle in Molten Salt Reactor by Using Enriched Uranium // Prog. Nucl. Energy. 2018. Vol. 104.
15. International Atomic Energy Agency IAEA. Advances in Small Modular Reactor Technology Developments A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2018 Edition // Iaea. 2018.
16. International Atomic Energy Agency. Thorium Fuel Cycle: Potential Benefits and Challenges. 2005. № May.
17. Lung M., Gremm O. Perspectives of the Thorium Fuel Cycle // Nucl. Eng. Des. 1998. Vol. 180, № 2. P. 133-146.
18. Thilagam L. et al. A WWER-1000 LEU and MOX Assembly Computational Benchmark Analysis Using the lattice Burnup Code EXCEL // Ann. Nucl. Energy. Elsevier Ltd, 2009. Vol. 36, № 4. P. 505-519.
19. Leppänen J. et al. The Serpent Monte Carlo code: Status, Development and Applications in 2013 // Ann. Nucl. Energy. 2015. Vol. 82. P. 142-150.
Review
For citations:
Elazaka A.I., Savander V.I., Tikhomirov G.V. Comparative Study of Spectral Regulation Range of Excess Reactivity Control in Pressurized Water Reactors Using Zirconium Displacers for Uranium and Thorium Fuel Cycles. Nuclear Safety. 2021;(2):58-67. (In Russ.) https://doi.org/10.26583/gns-2021-02-06