Preview

Nuclear Safety

Advanced search

Salting out of americium-241 in the sorption process using a solid-phase extractant based on TODGA

https://doi.org/10.26583/gns-2023-04-01

EDN: APDCTL

Abstract

Today, the «Proryv» project is developing effective methods of reprocessing irradiated nuclear fuel (SNF) to return long-lived radionuclides to the fuel cycle to close it. One of the challenges of closed fuel cycle development is the reprocessing of highly active nitric acid raffinates from the PUREX-process. To achieve this task, it is necessary to separate americium-241 from liquid radioactive waste. When processing and fractionating liquid radioactive waste, extraction and sorption technologies for the extraction, purification and concentration of radionuclides are widely used. The highest efficiency and selectivity in the extraction processes of actinoids (III) and lanthanides (III) with rare earth elements (REE) and transplutonium elements (TPE) from nitric acid solutions of spent nuclear materials reprocessing were shown by extractants based on N, N, N', N'-tetraoctyldiglycolamide (TODGA). Before using a solid-phase extractant based on TOGDA, the ions of the substance in solution must be converted to neutral complexes or other non-dissociated compounds. This can be achieved by adding neutral salts to the solution, which reduce the solubility of the elements to be separated, shift the extraction distribution and significantly increase the extraction efficiency. The extracted substance is extracted in the form of a new phase - solid precipitate, liquid or gas phase, and in the case of liquid extraction there is an increase in the capacity of the extractant for the target component. Therefore, the addition of salts-salting agents to the aqueous phase to increase the ionic strength of the solution increases the distribution coefficients of extracted substances, which in turn increases the capacity of sorbents. The purpose of this work is to study the process of salting out of americium-241 during sorption using an experimental modified sample of solid-phase extractant based on TODGA in the studied model solutions of liquid radioactive waste with a uranium macrocomponent for different NaNO3 contents. The study revealed that the highest distribution coefficients for the sorption of americium-241 and uranium were obtained in a solution containing 100 g/l NaNO3, but for uranium this effect is much less pronounced than for americium-241. During the study of the sorption kinetics of americium-241 and uranium, the salting effect was revealed, which is confirmed by the values of the equilibrium concentrations of americium-241 and uranium in solution at the same time point but with different NaNO3 concentrations. The difference in the equilibrium concentrations for americium-241 was an order of magnitude towards its decrease when NaNO3 concentration was increased up to 100 g/litre. The use of this effect makes it possible to obtain the maximum capacity for americium-241 in the system with uranium macrocomponents

About the Authors

A. A. Savelev
National Research Nuclear University «MEPhI»
Russian Federation

Senior Lecturer at the Institute of Nuclear Physics and Technology



V. I. Rachkov
National Research Nuclear University «MEPhI»
Russian Federation

Corresponding Member of the Russian Academy of Sciences, Doctor of Technical Sciences, Processor, Head of the Department of Thermophysics, Institute of Nuclear Physics and Technology



References

1. Adamov E.O., Mochalov Y.S., Rachkov V.I., Khomyakov Yu.S., Shadrin A.Yu. et al. Spent nuclear fuel reprocessing and nuclear materials recycling in two-component nuclear energy. Atomic energy. 2021;130:29–35. https://link.springer.com/article/10.1007/s10512-021-00769-w

2. Адамов Е.О., Каширский А.А., Муравьев Е.В., Толстоухов Д.А. Структура и параметры двухкомпонентной ядерной энергетики при переходе к замыканию ядерного топливного цикла. Известия Российской академии наук. Энергетика. 2016;5:14–32. EDN: WRJCHH. Режим доступа: https://elibrary.ru/download/elibrary_26931859_70056435.pdf (дата обращения: 25.07.2023).

3. Адамов Е.О., Алексахин Р.М., Большов Л.А., Дедуль А.В., Орлов В.В. и др. Проект «Прорыв» – технологический фундамент для крупномасштабной ядерной энергетики. Известия Российской академии наук. Энергетика. 2015;1:5–13. EDN TLUFGN. Режим доступа: https://elibrary.ru/download/elibrary_23112795_31777322.pdf (дата обращения: 25.07.2023).

4. Shadrin A.Y., Ivanov V.B., Skupov M.V., Troyanov V.M., Zherebtsov A.A. Comparison of closed nuclear fuel cycle technologies. Atomic Energy. 2016;(121):119–126. https://doi.org/10.1007/s10512-016-0171-2

5. Мясоедов Б.Ф. Калмыков С.Н., Шадрин А.Ю. Химические технологии замыкания ядерного топливного цикла. Вестник Российской академии наук. 2021;(91)5:459–469. EDN: UHXNNP. https://doi.org/10.31857/S0869587321050170

6. Ровный С.И., Шевцев П.П. Современное состояние и пути совершенствования радиохимической технологии выделения и очистки урана и плутония. Вопросы радиационной безопасности. 2007;2(46):5–13. EDN: JUUSRF. Режим доступа: https://elibrary.ru/download/elibrary_11643604_37252633.pdf (дата обращения: 25.07.2023).

7. Sharov V.E., Kostikova G.V. Influence of the nature of the diluent on the extraction of Eu(III), Am(III), and Cm(III) with N,N,Nꞌ,Nꞌ-Tetrabutyldiglycolamide from nitric acid solutions. Radiochemistry. 2023;(65):45–51. https://doi.org/10.1134/S1066362223010071

8. Potential benefits and impacts of advanced nuclear fuel cycles with actinide partitioning and transmutation. Paris: OECD Publishing. NEA. 2011. Available at: https://www.oecd-nea.org/jcms/pl_14572/potential-benefits-and-impacts-of-advanced-nuclear-fuel-cycles-with-actinide-partitioning-and-transmutation?details=true (accessed: 15.07.2023).

9. Runde W.H., Schulz W.W. Americium. In: Morss L.R., Edelstein N.M., Fuger J. (eds) The chemistry of the actinide and transactinide elements. Springer, Dordrecht. 2008. Р. 1265–1395. https://doi.org/10.1007/1-4020-3598-5_8

10. Lyzlova E.V., Glukhova A.V., Konnikov A.V., Dyug K.O. Development of a sorption technique for the selective separation of plutonium and americium from nitric acid intermediate-level wastes of chemical and metallurgical production. Radiochemistry. 2022;64(2):176–182. EDN: YBOFJM. https://doi.org/10.1134/S1066362222020096

11. Milyutin V.V., Gelis V.M., Nekrasova N.A., Firsova L.A., Kharitonov O.V., Baulin V.E. Sorption of REE(III), Th(IV), and U(VI) ions from nitric acid solutions with sorbents based on tetraoctyldiglycolamide. Radiochemistry. 2015;57(5)513–517. EDN VAGAEX. https://doi.org/10.1134/S1066362215050100

12. Виданов В.Л., Парабин П.В., Гуров Г.Л. Широков С.С., Шадрин А.Ю. «Горячий» тест разделения америция и кюрия методом вытеснительной комплексообразовательной хроматографии. Радиохимия. 2023;65(3):234–239. EDN: ENRFDS. https://doi.org/10.1134/S1066362223030049

13. Milyutin V.V., Khesina Z.B., Laktyushina A.A. Buryak A.K., Nekrasova N.A., Kononenko O.A., Pavlov Yu.S. Chemical durability and radiation resistance of sorbents based on N,N,N',N'-tetra-n-octyldiglycolamide. Radiochemistry. 2016;58(1):59–62. EDN: WSLYNB. https://doi.org/10.1134/S1066362216010094

14. Mokhodoeva O.B., Myasoedova G.V., Zakharchenko E.A. Solid-phase extractants for radionuclide preconcentration and separation. New possibilities. Radiochemistry. 2011;53(1):35–43. EDN: OCDEEH. https://doi.org/10.1134/S106636221101005X

15. Ansari S., Pathak P., Mohapatra P., Manchanda V.K. Chemistry of diglycolamides: promising extractants for actinide partitioning. Chemical Reviews. 2012;(3)112:1751–1772. https://doi.org/10.1021/cr200002f

16. Ansari S.A., Pathak P.N., Manchanda V.K., Husain M., Prasad A.K., Parmar V.S. N,N,N′,N′‐tetraoctyl diglycolamide (TODGA): a promising extractant for actinide partitioning from high level waste (HLW). Solvent Extraction and Ion Exchange. 2005;23(4):463–479. https://doi.org/10.1081/SEI-200066296

17. Sasaki Y., Tachimori S. Extraction of actinides (III), (IV), (V), (VI), and lanthanides (III) by structurally tailored diamides. Solvent Extraction and Ion Exchange. 2002;20(1):21–34. https://doi.org/10.1081/SEI-100108822

18. Horwitz E.P., McAlister D.R., Bond A.H., Barrans Jr R.E. Novel extraction of chromatographic resins based on tetraalkyldiglycolamides: characterization and potential applications. Solvent Extraction and Ion Exchange. 2005;23(3):319–344. https://doi.org/10.1081/SEI-200049898

19. Коровин В.Ю., Рандаревич С.Б. Синтез, свойства и применение твердых экстрагентов (обзор). Химическая технология. 1991;(5):3. Режим доступа: https://scholar.google.com/citations?view_op=view_citation&hl=ru&user=wd3JTiYAAAAJ&

20. citation_for_view=wd3JTiYAAAAJ:dshw04ExmUIC (дата обращения: 02.08.2023).

21. Аляпышев М.Ю., Бабаин В.А., Кенф Е.В. и др. Способ выделения америция из жидких радиоактивных отходов и отделения его от редкоземельных элементов. Патент РФ № 2603405 RU. Дата публикации 27.11.2016. Бюл. №33. Режим доступа: https://new.fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&DocNumber=0002603405&TypeFile=html (дата обращения: 02.08.2023).

22. Klochkova N.V., Savel’ev A.A., Pozdnyakova N.Y., Pisanenko S.S., Anan’ev A.V. Investigation of americium sorption from model liquid radwaste solutions using TODGA-based solid-phase extractant. Atomic Energy. 2019;127:40–44. https://doi.org/10.1007/s10512-019-00581-7

23. Савельев А.А., Клочкова Н.В., Рачков В.И. Определение коэффициентов диффузии америция и урана в процессе их сорбции на твердофазном экстрагенте на основе ТОДГА. Вестник Национального исследовательского ядерного университета «МИФИ». 2020;9(4):293–297. EDN: EBLTGY. https://doi.org/10.1134/S2304487X20040070

24. Савельев А.А., Клочкова Н.В., Рачков В.И. Методы аналитического контроля америция-241 и урана в процессе их сорбции на твердофазном экстрагенте на основе ТОДГА. Ядерная физика и инжиниринг. 2021;12(1):16–20. EDN: GKYTQM. https://doi.org/10.56304/S2079562920060482


Review

For citations:


Savelev A.A., Rachkov V.I. Salting out of americium-241 in the sorption process using a solid-phase extractant based on TODGA. Nuclear Safety. 2023;(4):5-10. (In Russ.) https://doi.org/10.26583/gns-2023-04-01. EDN: APDCTL

Views: 278


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-414X (Print)
ISSN 2499-9733 (Online)