Preview

Nuclear Safety

Advanced search

Study of mathematical models of elastoplastic materials

https://doi.org/10.26583/gns-2024-04-05

EDN: ROFQTO

Abstract

The objective of this article is to study the issues of mathematical elastic-plastic models of a material taking into account the available rheological properties and their connection with the finite element model in modern software complexes of numerical modeling. The article presents the results of numerical modeling of deformation processes of materials, deformation diagrams of materials, analytical methods for approximating deformation diagrams. One of the analytical methods of the restoration of the Prandtl diagram is presented, a method using the Ramberg-Osgood coefficient, which includes the values of reference parameters about the material, such as elastic modulus, tensile strength, yield strength, fracture criteria, elongation and relative thinning. The description and results of numerical modeling of the material destruction, modeling of plastic instability preceding the destruction, and the results of a study to establish grid convergence are presented. The procedure of verifying the numerical model of the material, which is a calibration tests of sample uniaxial rupture model parameters, is given.

About the Authors

A. I. Balyabin
Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics
Russian Federation

research engineer



S. I. Gerasimov
Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics; Sarov Institute of Physics and Technology the branch of the National Research Nuclear University «MEPhI»; Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences
Russian Federation

Dr. Sci. (Phys. and Math.), Head of Department, professor



D. A. Ladin
Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics; Sarov Institute of Physics and Technology the branch of the National Research Nuclear University «MEPhI»
Russian Federation

engineer, postgraduate student



S. A. Maskaykin
Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics
Russian Federation

Chief engineer



D. Y. Smirnov
Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics; Sarov Institute of Physics and Technology the branch of the National Research Nuclear University «MEPhI»
Russian Federation

scientific researcher, lecturer 



T. S. Shabrova
Russian Federal Nuclear Center – All-Russian Scientific Research Institute of Experimental Physics
Russian Federation

Research engineer



References

1. Морозов Е.М., Муйземнек А.В., Шадский А.С. ANSYS в руках инженера: механика разрушения. Москва: Москва: URSS, 2008. 453 с.Режим доступа: https://search.rsl.ru/ru/record/01003413407 (дата обращения: 28.09.2024).

2. Жерноклетов М.В., Глушков Б.Л. Методы исследования свойств материалов при интенсивных динамических нагрузках. Монография. Саров: ФГУП «РФЯЦ–ВНИИЭФ», 2005. 428 с. Режим доступа: http://book.sarov.ru/product/research-techniques-of-properties-of-materials/ (дата обращения: 28.09.2024).

3. Soden P.D., Kaddour A.S., Hinton M.J. Recommendations for designers and researchers resulting from the world-wide failure exercise. Failure criteria in fibre-reinforced-polymer composites. 2004. Р. 1223–1251. https://doi.org/10.1016/B978-008044475-8/50039-1

4. Бетехтин В.И., Журков С.Н. Временная и температурная зависимость прочности твердых тел. Проблемы прочности. 1971;2:39–44. Режим доступа: http://unilibrary.ru/articles/journals/problemi-prochnosti/problemi-prochnosti-1971/problemi-prochnosti-1971-02/betehtin-vi-zhurkov-sn-vremennaja-i-temperaturnaja-zavisimost-prochnosti-tverdih-tel.html (дата обращения: 28.09.2024).

5. Огородников В.А., Пушков В.А., Тюпанова О.А. Основы физики прочности и механики разрушения. Саров: РФЯЦ-ВНИИЭФ, 2007. 338 с. Режим доступа: https://rusneb.ru/catalog/000199_000009_003414764/ (дата обращения: 28.09.2024).

6. Ахмадеев Н.Х. Исследование откольного разрушения при ударном деформировании. Модель повреждаемой среды. Прикладная механика и техническая физика. 1983;4:158–167. Режим доступа: https://www.sibran.ru/upload/iblock/f43/f43b38565aa7260831063f242cb3d3bb.pdf (дата обращения: 28.09.2024).

7. Akhmadeev N.H. Investigation of spall fracture during shock deformation. The model of the damaged environment. Journal of applied mechanics and technical physics. 1983;4:158–167. Available at: https://www.sibran.ru/upload/iblock/f43/f43b38565aa7260831063f242cb3d3bb.pdf (accessed: 28.09.2024).

8. Марковец М.П. Диаграммы истинных напряжений и расчет на прочность. Диссертация доктора технических наук. Москва: Издательствово Оборонгиза, 1947. 139 с. Режим доступа: https://rusneb.ru/catalog/000199_000009_011185059/ (дата обращения: 28.09.2024).


Review

For citations:


Balyabin A.I., Gerasimov S.I., Ladin D.A., Maskaykin S.A., Smirnov D.Y., Shabrova T.S. Study of mathematical models of elastoplastic materials. Nuclear Safety. 2024;14(4):42-54. (In Russ.) https://doi.org/10.26583/gns-2024-04-05. EDN: ROFQTO

Views: 164


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2305-414X (Print)
ISSN 2499-9733 (Online)